FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 16 dotazů obsahujících »plamen«

3) Co je to kouř?12. 10. 2009

Dotaz: Co je to kouř? Co je to vidět při nedokonalém spalovaní dřeva na ohništi (bez plamene) a jak je možné, že "to" zmizí při lepším spalovaní (s plamenem). Poddotaz: jsou některé běžné plyny viditelné, nebo se jedná vždy o aerosol (pevná či kapalná látka rozptýlená v plynu)? (Ludvík Trnka)

Odpověď: Kouř jsou pevné částečky rozptýlené v plynu, takže při nedokonalém spalování při táboráčku jde o saze, popel a další pevné zbytky unášené vznikajícími plyny. Při vyšší teplotě a lepším přístupu kyslíku se řada nespálených zbytků zoxiduje až na plyny a nepřispívá tedy ke vzniku kouře. Další možností vzniku kouře je reakce dvou plynů, při které vzniká pevná látka - například setkají-li se (neviditelné) páry chlorovodíku a amoniaku, reagují za vzniku pevného chloridu amonného, což se projeví jako vznik bílého kouře. Video této reakce je například na serveru YouTube: http://www.youtube.com/watch?v=pSarGx8Uank&feature=related V baňce vzniká reakcí chloridu se silnou kyselinou plynný chlorovodík, ten je postanní trubičkou odváděn nad kádinku s roztokem amoniaku, z níž se uvolňuje plynný amoniak. Jakmile se oba plyny u ústí kádinky setkají, vzniká bílý kouř, tedy mikroskopické částečky pevného chloridu amonného rozptýlené ve vzduchu.

Některé plyny jsou barevné a můžeme je vidět (při dostatečné koncentraci). Běžným příkladem je červenohnědý oxid dusičitý, vznikající při některých reakcích z kyseliny dusičné. Skutečně se může jevit jako "hnědý kouř", ale narozdíl od pravého kouře neobsahuje žádné pevné částečky, které by se např. mohly usazovat na filtru. Podobně zbarvený je i brom v plynném skupenství, chlor je při vyšší koncentraci pozorovatelný jako žlutozelený.

(Hanka Böhmová)   >>>  

4) Teplota planeme zápalky20. 05. 2008

Dotaz: Dobrý den, chtěl jsem se Vás zeptat, jaká je teplota plamene u hořící zápalky? Děkuji za odpověď. (Jirka)

Odpověď: Nejvyšší teplota plamene hořící zápalky, kterou se mi podařilo naměřit, byla něco málo přes 800 °C.

(Jakub Jermář)   >>>  

5) Barevně hořící svíčky20. 03. 2007

Dotaz: Dobrý den, známý si na dovolené v Itálii koupil sadu svíček. Jsou zajímavé tím, že mohou hořet různými barvami. Jednu z nich zapálil a hořela zeleným plamenem. Bylo to hodně zajímavé, ale nedokážu si vysvětlit, v čem je rozdíl od obyčejných svíček. Jaký materiál mohl být použitý? Předem děkuji za odpověď. S pozdravem Jan Feilhert. (Jan Feilhert)

Odpověď: Barvu plamene ovlivňuje nejčastěji přítomnost iontů kovů, které dodáním energie ve formě tepla přecházejí do stavu o vyšší energii. Při návratu zpět do stavu o nižší energii se přebytečná energie vyzáří ve formě charakteristicky zbarveného světla. S tímto jevem se obvykle setkáváme při ohňostrojích, využívá se též v chemii jako tzv. plamenové zkoušky k důkazu přítomnosti některých kationtů kovů.

Prakticky jde zřejmě o to, že knot svíčky na nasycen nejčastěji chloridy (ale v rachejtlích například i dusičnany) příslušných kovů - k červenému zbarvení se využívají sloučeniny lithia, vápníku či stroncia, k žlutému zbarvení chlorid sodný, k zelenému zbarvení chlorid měďnatý či dusičnan barnatý, následně i jejich kombinace. Přítomnost strontnatých a barnatých sloučenin může naznačit (pokud nemáte k dispozici přímo informace o složení) varování před jedovatostí výrobku, rozpustné sloučeniny strontnaté a barnaté jsou totiž silně toxické a zbytky po Sivestrovských ohňostrojích dokonce měřitelně kontaminují sníh, který následně může způsobit lehké otravy například u psů.

(Hanka Böhmová)   >>>  

6) Svíčka v beztížném stavu23. 03. 2006

Dotaz: Zdravím Vás! Kdybych v beztížném stavu, např. na stanici ISS, zapálil svíčku, jaký tvar by měl její plamen? Kulový? A hořel by vůbec? Já si totiž myslím, že po zapálení knotu by v příštím okamžiku došlo ke spotřebování kyslíku v nejbližším okolí, navíc by mělo dojít i k rozpínání horkých zplodin rovnoměrně do všech stran a plamen by měl zhasnout kvůli nedostatku kyslíku. (P.Fatr)

Odpověď: Pokusy tohoto druhu se provádějí jednak na palubách amerických raketoplánů a jednak ve speciálním zařízení v Glennově výzkumném centru v Ohio (zde používají cosi jako "utržený" výtah). Prováděli i pokusy s hořící svíčkou a pokus vyfotili:


vlevo při běžné gravitaci, vpravo ve stavu beztíže

Tvar plamene je tedy skutečně kulový a svíčka alespoň nějakou dobu hořet bude. Zda takto vydrží hořet dlouhodobě a jak dochází k míchání plynů v okolí plamene se mi nepodařilo zjistit.

(Jakub Jermář)   >>>  

7) Záření žhavých těles20. 10. 2005

Dotaz: Zajímalo by mě, jak závisi tepelné záření tělesa na barvě tělesa, a materiálu, a proč u kovů a plamene s teplotou okolo 1500 K je již barva žlutá, zatímco podle křivky vyzařování absolutně černého tělěsa i u hvězd je až do teploty 3000 K barva červená, a až 5-6 kK je tato barva žlutá, a jak bych mohl zjistit teplotu plamene. (Pavel)

Odpověď: Pokud nás zajímá závislost intenzity tepelného záření na tom, jakou barvu má těleso při nízké teplotě (tedy jakou barvu vidíme při pokojové teplotě), pak lze zjednodušeně říct, že čím je těleso tmavší a matnější (tj. čím snáze pohlcuje dopadající světlo), tím více bude také při vysoké teplotě světlo (resp. tepelné záření) vyzařovat. Tato skutečnost je známa jako "Kirchhoffův zákon vyzařování".

Nyní se ještě podívejme na to, jakou barvu rozžhavená tělesa mají (jak se nám jeví). Měření přístroji (zcela v souladu s tzv. Wienovým posunovacímo zákonem) skutečně ukáže, že těleso bude vyzařovat nejvíce v oblasti červeného viditelného světla teprve když jej zahřejeme na několik tisíc kelvinů. Proč tedy vnímáme jako červeně zářící i tělesa chladnější? Protože lidské oko je na různé vlnové délky růžně citlivé a výrazně tak zkresluje výsledek "měření". Jednoduše řečeno těleso při tisíci kelvinech září především v infračervené části spektra a jenom menší část vyzařuje v podobě červeného světla. Naše oko ovšem infračervenou část spektra nevnímá a soustředí se na světlo červené barvy.

Zohledníme-li tuto nedokonalost oka, můžeme pak odhadovat teplotu žhavých těles dle této tabulky:
Teplota tělesa  zdánlivá barva tělesa
 700 °Ctmavě červená
1000 °Coranžová
1200 °Cžlutá
1300 °Cbílá

(Jakub Jermář)   >>>