FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 16 dotazů obsahujících »kinetické«

1) Proč tělesa při průletu atmosférou hoří?13. 03. 2011

Dotaz: Proč tělesa nebo důsledkem čeho(říká se to např. o meteorech), která se dostanou do zemské atmosféry shoří? Díky!! (Norbert Dubský)

Odpověď: Dobrý den. Atmosféra není nehmotná - skládá se z různých malých částic, atomů, molekul. Směrem k povrchu Země hustota atmosféry roste (můžeme si to představit tak, že v určitém objemu se u povrchu Země nachází mnohem víc částeček než daleko od ní). Vlétne-li objekt do vrchních vrstev atmosféry, započne tzv. (aero)dynamický ohřev. Těleso při letu naráží do částeček a tlačí je před sebou (zvyšuje se tlak a ruku v ruce s ním i teplota). Dále dochází ke kinetickému ohřevu, který by se dal shrnout pod termín "tření". Těmito jevy dochází k brždění atmosferických částic/objektu, tedy k přeměně jejich kinetické energie v teplo. Plyn se v okolí tělesa ionizuje, zapaluje. Povrchová vrstva objektu se začne tavit, vypařovat a hořet. Tento proces může trvat různou dobu - my můžeme pozorovat různě "dlouhé" meteory. Jestli objekt shoří (a jak rychle) závisí na faktorech jako rychlost vstupu do atmosféry (teplo uvolněné při pohybu rychlostí "v" v atmosféře je úměrné kvadrátu této rychlosti), na úhlu vstupu do atmosféry (čím bližší je úhel vstupu 90 stupňům, tím větší energie se naráz uvolňuje; objekt se "klouže" po vrstvách atmosféry nebo do ní prostě "narazí"), samozřejmě na materiálu, hmotnosti, ... Tento jev nepozorujeme pouze u těles, která k nám připutovala z vesmíru. Se stejným problémem se potýkají i raketoplány nebo družice při "návratu domů", v menší míře potom letadla.
(Ivana Víšová)   >>>  

2) Rychleji než světlo19. 01. 2008

Dotaz: Dobrý den, před nedávnem udělal naší třídě náš velevážený vyučující termodynamiky do hodiny vsuvku o částici, která má být rychlejší než světlo. Z tohoto webu jsem usoudil, že se asi jedná o urychlený foton. Popisoval celou situaci na myšlenkovém pokusu ve kterém částice o rychlosti světla neměla žádný časový přírůstek (čas se pro ní z našeho pohledu zastavil). Tuto částici urychlil na rychlost vyšší než rychlost světla a ona pak "cestovala" do minulosti. To znamenalo, že částice dorazila do cíle ještě dříve, než vůbec byla vypuštěna na cestu. Chtěl jsem se tedy zeptat, jestli již byl tento jev nějak testován a opravdu se lidstvu již podařilo překonat rychlost světla a odeslat tak foton do minulosti nebo se jedná jen o neuskutečnitelnou teorii a můžeme si ji sestrojit jen jako myšlenkový pokus. Děkuji za odpověď (Miroslav Kabát)

Odpověď: Světlo (fotony) se nemůže pohybovat jinak, než rychlostí světla, přičemž rychlost světla je dokonale konstantní (tedy myšleno ve vakuu - v látkových prostředích je rychlost světla obecně jiná). Z toho rovnou plyne, že takováto neobvykle rychlá částice by nemohla být foton. Existují spekulace, že by mohla existovat částice - většinou ji říkáme tachyon (z řeckého ταχύς [tachýs] = rychlý) - která by se rychleji než světlo ve vakuu pohybovala. Některé teorie ji připouštějí, některé ne. Z teorie relativity navíc plyne, že není možné pomalou částici urychlit na rychlost světla nebo vyšší, takže tachyon nemůžeme získat urychlením něčeho (pod)světelného, musel by se tedy pohybovat nadsvětelnou rychlostí pořád, po celou dobu své existence).

Existence takové nadsvětelné částice by skutečně znamenala, že bychom se museli důkladně revidovat své představy o plynutí času, s tím spojené rychlosti, kinetické energii a dalších.

Obecně se ale předpokládá, že žádná nadsvětelná částice neexistuje. Dosud nebyla nikdy pozorována a ani nevím o existenci nějakých pozorovaných jevů, které se pomocí tachyonů daly vysvětlit.

(Jakub Jermář)   >>>  

3) Foucaultovy proudy aneb magnet v trubce16. 11. 2007

Dotaz: Prosím o radu proč padá kruhový magnet v mědené trubce se značným zpomalením. Děkuji (karel)

Odpověď: Na věc se lze podívat z několika pohledů. Třeba tak, že padající magnet způsobuje změnu magnetického pole (když tam magnet je, je jiné, než když je o kousek dál). Měděná trubka... to je vlastně cívka s jedním jediným závitem. Pokud pohybuju v cívce magnetem (měním v ní magnetické pole), indukuju v ní napětí a je-li nějak propojena (což ten náš jediný závit - trubka je), potečou v ní proudy. Podle Lenzova zákona to navíc budou takové proudy, aby vyvolaly magnetickou síly pusobící proti změně magnetického pole - v našem případě tedy budou působit proti (směru) pádu magnetu a budou jej brzdit. Jiný pohled (bez použití Lenzova zákona) je, že k výrobě oněch proudů (v tomto případě se jim říká Foucaultovy proudy) je potřeba energie... a ta se "vezme na úkor" kinetické energie padajícího magnetu.

(Jakub Jermář)   >>>  

4) Poloha a energie v kvantové mechanice29. 10. 2007

Dotaz: V kvantové fyzice jsou 2 veličiny kompatibilní, když je lze současně měřit. To platí, když operátory těchto veličin mají společné vlastní stavy a jejich komutátor je roven nule. Pro kombinaci poloha-hybnost nebo energie-čas je to jasné, ty jsou ve všechn učebnicích rozebrány. Ale co kombinace poloha-energie? Jejich komutátor je nulový, tak by měly mít stejné vlastní stavy. Ale vlastní stavy energie elektronu v atomu (takové ty tvary orbitalů - koule, prostorové osmičky, atd) nejsou vlastní stavy operátoru polohy (to by měl být jen jeden bod v prostoru). Možná je problém v tom, že operátor polohy komutuje s obecným operátorem energie, ale ne s Hamiltoniánem, který popisuje energii elektronu v obalu atomu. Znamená to, že poloha-energie někdy komutují a někdy ne? (Petr Plachý)

Odpověď: Máte pravdu v tom, že když dva operátory komutují (jejich komutátor je roven nule), existuje společný systém vlastních stavů a jim příslušející veličiny lze změřit současně.

Operátory souřadnice a hybnosti nekomutují, proto neexistují jejich společné vlastní stavy a nelze je změřit současně (s libovolnou přesností). To popisují tzv. Heisenbergovy relace neurčitosti. Podobnou nerovnost lze napsat i pro dvojici energie a čas, ale zde je třeba být opatrnější. V nerelativistické kvantové mechanice je čas parametrem (pro popis vývoje systému) a nezavádí se operátor času. I když lze podobnou nerovnost psát, musíme být při jejím odvození i interpretaci velmi opatrní. Podrobnější diskuzi s odkazy na další materiály lze najít v anglické Wikipedii:


K vašemu dotazu ohledně dvojice souřadnice-energie. Přiznám se, že nerozumím tomu, čemu říkáte "obecný operátor energie". Operátorem celkové energie je Hamiltonův operátor. Jedná se asi o jedinou výjimku, kdy se operátor jmenuje jinak a i značí jiným písmenem než jemu příslušející veličina.

Celková energie je součtem kinetické a potenciální energie. V našem případě bude operátor celkové energie (již zmíněný Hamiltonův operátor) součtem operátoru kinetické energie a operátoru potenciální energie.

Potenciální energie závisí na zkoumaném problému (např. pro zmíněný výpočet atomu vodíku se jedná o potenciální energii elektronu v elektrostatickém poli jádra) a (většinou) je závislá pouze na souřadnici a nezávislá na hybnosti. Proto operátor potenciální energie (obvykle) s operátorem souřadnice komutuje. Kinetická energie je vždy úměrná druhé mocnině hybnosti. Z tohoto důvodu operátor kinetické energie s operátorem souřadnice nekomutuje:



Díky tomu ani celková energie nekomutuje s operátorem souřadnice, a proto neexistují společné vlastní funkce těchto dvou operátorů.

(Zdeňka Broklová)   >>>  

5) Roztočená vajíčka12. 06. 2007

Dotaz: Dobrý den, mám docela zajímavý dotaz. Pokud roztočíme syrové vajíčko, po dvou až třech otáčkách se rychle zastaví, naopak vařené vejce se točí hodně dlouho. Dá se tento rozdíl nějak vysvětlit? Předem díky za odpověď. (M. Vozar)

Odpověď: Syrové vajíčko je uvnitř prakticky tekuté, uvařené pak tuhé. Pokud roztočíme uvařené vajíčko, točí se celé vajíčko a brzdí jej akorát tření s podložkou a odpor vzduchu (obojí je relativně malé). Roztočíme-li ale syrové vajíčko, roztáčíme hlavně skořápku a část vnitřku, zbytek vnitřku se - díky tomu že je tekutý a zároveň má setrvačnost - točí pomaleji. Uvnitř vajíčka tedy o sebe třou jednotlivé ruzně rychle rotující části a dochází tak k energetickým ztrátám, což se projeví právě rychlejším poklesem rotace (ztráty jdou na vrub kinetické energie).

(Jakub Jermář)   >>>