FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 6 dotazů obsahujících »elektrodu«

1) Anoda a katoda vodíkového článku24. 07. 2008

Dotaz: Jde mi o děje, které jsou podstatou vodíkového článku. Troskotám na tom, že nechápu, proč elektron uvolněný chemicky z atomu vodíku na příslušné eletrodě nevytvoří z elektrody zápornou elektrodu, nýbrž anodu (jak se všude píše). Přitom proton projde speciální membránou na druhou stranu a údajně tam vzniká katoda, přestože protony jsou kladné? Jak budou vypadat póly takové "baterky", kde je + a kde -, když to dostanu do rukou. (Boris Rychta)

Odpověď: Problém je jenom ve špatném pochopení terminologie. Označení anoda, resp. katoda, se nevztahuje k náboji elektrody, ale k druhu redoxního děje, který na ní probíhá. Anoda je elektroda, na níž probíhá oxidace. Katoda je elektroda, na níž probíhá redukce. Ale s jejím nábojem to může být všelijak:

Vezmeme-li případ katody, může redukce probíhat tak, že elektroda je od začátku záporně nabitá (je to záporný pól baterky) a silou "cpe" elektrony například vodíkovým kationtům v roztoku, které se pak redukují na atomy vodíku. Anebo může redukce probíhat tak, že na platinovém drátku se "sám od sebe" redukuje atom kyslíku na oxidový nebo hydroxidový anion, přičemž spotřebovává elektrony z původně neutrální elektrody (drátku) a tak ji nabíjí kladně (a vytváří z ní kladný pól baterky). V obou případech elektrodu nazýváme katoda (= elektroda s redukcí), ovšem v prvním případě je nabitá záporně, v druhém kladně. V prvním případě se jedná o elektrolýzu, děj, kdy připojením napětí (baterky) vyvoláme v roztoku chemickou reakci a, velmi hrubě řečeno, "náboje putují od elektrod do roztoku". V druhém případě se jedná o galvanický článek, při němž chemická reakce vyvolá napětí na původně nenabitých elektrodách (vzniká baterka) a, velmi hrubě řečeno, "náboje putují z roztoku na elektrody". Protože jde o děje protichůdné, opačného směru, i náboj katody (= elektrody s redukcí) bude v obou případech opačný.

Vrátíme-li se k otázce: skutečně, pokud ve vodíkovém článku odevzdává atom vodíku elektrony a tak se oxiduje, říkáme příslušné elektrodě bez ohledu na její náboj (který, jak správně usuzujete, je v tomto případě záporný) anoda.

Ovšem dokonce i etymologický slovník mylně tvrdí, že "katoda = záporná elektroda". Pokud už to chceme takto používat, musíme nutně dodat "při elektrolýze".

(Hanka Böhmová)   >>>  

2) Olověné akumulátory08. 09. 2007

Dotaz: Dobrý den, můj dotaz se týká olověných akumulátorů: Výsledkem chemického děje Pb+SO42- , který je na záporné elektrodě je sloučenina PbSO4 + 2e- . Aby se na kladné elektrodě vytvořilo PbSO4 +2H2O je zapotřebí oněch dvou elektronů ze záporné elektrody. Tyto elektrony se na kladnou elektrodu dostanou prostřednictvím vnějšího obvodu. Nabízí se mi otázka, proč tyto elektrony neprojdou skrz separátor a elektrolyt ke kladné elektrodě, když separátor i elektrolyt mají relativně velkou vodivost, což se vyžaduje, protože jejich vodivost tvoří část vnitřního odporu akumulátoru, který je mnohdy menší než připojená zátěž. (Martin Gabzdyl)

Odpověď: Na elektrodě, o níž je řeč, probíhá samovolná oxidace olova - jde tedy o anodu. Na rozhraní povrchu elektrody a elektrolytu se samovolně ustavuje redukčně-oxidační rovnováha a vzniká zde určitý potenciál daný tím, že povrch elektrody je oproti elektrolytu "zápornější" (rovnováha produkuje určitý přebytek elektronů na povrchu elektrody). Rozdíl potenciálů katody a anody pak vytváří spád - tedy napětí - umožňující pohyb elektronů od anody ke katodě. To se může dít jednak cestou přes vodič, jednak cestou přes elektrolyt. Z výše napsaného však vyplývá, že cesta elektronů z anody do roztoku je zablokována "protisměrným" potenciálem na rozhraní ("+" v elektrolytu, "-" na elektrodě), nestačí tedy uvažovat pouze vodivosti.

Elektrony přecházející z povrchu elektrody do roztoku by se musely navázat na nějakou částici - tedy redukce - což je ovšem právě opačný děj než děj samovolně probíhající. Lze to uskutečnit pouze působením většího vnějšího napětí opačného směru, než je napětí rovnovážné - tedy při nabíjení akumulátoru - kdy elektrony dostatečně urychlené v opačném směru mohou "prorazit" energetickou bariéru protisměrného potenciálu a podstoupit původně energeticky nevýhodný děj (redukci - přechod do roztoku).

Toto blokování toku elektronů protisměrným potenciálem se využívá například při ochraně velkých kovových předmětů proti korozi. Jednou z možností je vložení určitého malého napětí opačného směru, než je rovnovážné napětí "článku" vznikajícího při korozních reakcích. Ačkoli chemické podmínky pro vznik koroze dále trvají, jedná se nyní o děj energeticky nevýhodný, který neprobíhá, nebo je významně utlumen.

(Hana Böhmová)   >>>  

3) Zhasínat žárovky nebo je nechat svítit?, Plazma lampy08. 04. 2004

Dotaz: Dobrý den, v poslední době jsem několikrát slyšel, že při zapínání a vypínání žárovky nebo jiných el. spotřebičů se spotřebuje více energie než kdyby žárovka svítila. Zajímalo by mě jestli je to pravda a jak si můžu případně vypočítat dobu kdy je už výhodnější žárovku vypnout než ji nechat svítit. Pak by mě ještě zajímalo na jakém principu fungují tzv. plazma lampy, které vyzařují "blesky" a pokud se jich člověk dotkne tak se všechny paprsky soustředí do místa dotyku. Děkuji za odpověď. (Viktor Branecký)

Odpověď: Patrně máte na mysli skutečnost, že studené vlákno žárovky má menší odpor než horké. To vede k tomu, že po zapnutí teče žárovkou po zlomek sekundy větší proud než potom při stálém svícení. Prakticky podstatné je to asi jenom v tom, že takto namáhané vlákno se při zapnutí občas přepálí (častěji než při svícení). Když zapínáte nějaký motor, také na rozběh potřebujete větší okamžitý výkon. Takovýmto počátečním proudovým nárazům se můžete bránit elektronikou, která se postará o plynulý náběh.
"Plazma lampy" fungují tak, že pomocí vysokého napětí s vysokou frekvencí ionizujete inertní plyn v kouli, ruka na kouli znamená "elektrodu" s kapacitní vazbou přes sklo koule. Podrobněji například na stránce http://www.powerlabs.org/plasmaglobes.htm a dalších, klíčová slova jsou například "plasma globe".
(Jiří Dolejší)   >>>  

4) Tranzistor versus tyristor04. 01. 2004

Dotaz: Dobrý den, chtěl bych se zeptat: Jak nejstručnějí popsat rozdíl mezi tranzistorem a tyristorem? (Čenda)

Odpověď: Klasický bipolární tranzistor (existují i jiné druhy tranzistorů) se skládá ze dvou přechodů PN tvořených třemi vrstvami polovodičů s různým typem vodivosti. Podle uspořádání těchto vrstev se tyto tranzistory rozdělují na PNP a NPN. Bipolární tranzistor má tři vývody: kolektor (C), bázi (B) a emitor (E). Pokud jej zapojíme do série (vývody C-E) se žárovkou (spotřebičem) do obvodu stejnosměrného proudu, můžeme tranzistor sepnout (a tím rozsvítit i žárovku) malým proudem protékajícím přechodem báze-emitor (B-E). Tento proud stačí řádově 100-krát menší než je proud žárovkou. Žárovka přitom svítí pouze pokud protéká proud přechodem B-E. Pro další informace a schemata viz např. zapojení se společným emitorem v (viz skripta z elektroniky). Při zmenšovaní řídícího proudu přechodem B-E se od jeho určité hodnoty tranzistor zavírá - zmenšuje i proud žárovkou, tranzistor pak pracuje v zesilovacím režimu. V tomto režimu je možno řídit velký proud mezi C-E pomocí malého (řádově 100-krát menšího) proudu mezi B-E.
Tyristor je vícevrstvá polovodičová součástka určena pouze pro spínací účely. Má (podobně jako tranzistor) tři vývody: anodu (A), katodu (K) a řídící elektrodu (G). Pokud jej zapojíme do série (vývody A-K) se žárovkou (spotřebičem) do obvodu stejnosměrného proudu, můžeme tyristor sepnout (a tím rozsvítit i žárovku) proudovým impulzem mezi řidící elektrodou (G) a katodou (K). Po ukončení proudového impulzu zůstane (pokud je proud žárovkou dostatečný) tyristor sepnutý a žárovka rozsvícena. Vypneme ji pouze přerušením napájení (nebo komplikovanějším způsobem pomocí obvodu paralelně zapojeného k tyristoru). V obvodu střídavého nebo pulzujícího proudu je tyristor vypnut při průchodu okamžité hodnoty proudu nulou (takhle to např. funguje ve stmívačích osvětlení).
Z hlediska použití je tedy možno tranzistor i tyristor použít jako spínač, kdy malým proudem bází nebo proudovým impulzem řídící elektrodou ovládáme velký proud protékající spotřebičem. Tranzistor je navíc možno použít jako zesilovač. Tyristor na rozdíl od tranzistoru zůstává sepnutý (“vede“) i po odeznění ovládacího proudu, proud tyristorem musí být přerušen jiným způsobem.
(RNDr. Peter Žilavý, Ph.D.)   >>>  

5) Změny vlastností plynů při ionizaci21. 06. 2002

Dotaz: 1) Kde lze najít (web nebo publikace) něco o změnách vlastností plynů a vodních par při ionizaci. Zajímá mne zejména změna elektrického odporu a elektrické pevnosti plynů při ionizaci. 2) Lze docílit ionizace pomocí laserového paprsku ? (Jiří Büllow)

Odpověď: 1/ Konkrétně fyziku plazmatu lze najít na stránce http://vega.fjfi.cvut.cz/docs/umfmat/umf_url.html,
tam se klikne na čtyřku, a jde se poněkud dolů - pod jadernou fyzikou je fyzika plazmatu. Další informace naleznete na stránkách:
http://www.plasmas.org/index.html, http://FusEdWeb.pppl.gov/index.html, http://www.plasmacoalition.org/, http://fusioned.gat.com/Teachers/SlideShow.html

http://www.aldebaran.cz/ Bohužel na tomto serveru nejsou udělány výboje v plynech, nicméně jsou tam hezké obrázky a hlavně české povídání o plazmatu vůbec.

Co se týče změny elektrické vodivosti a elektrické pevnosti při ionizaci, je odpověď značně závislá na druhu plynu a stupni ionizace. Obecně se dá říci, že ionizovaný plyn se stává elektricky vodivý (je třeba uvážit, že v atmosféře kolem nás je v každém kubickém cm asi 2000 iontů), a že za určitých podmínek (aplikací dostatečně vysokého napětí mezi elektrodami, mezi kterými se vodivost plynu měří) dojde k lavinovému efektu, kdy již vytvořené elektrony a ionty na své dráze dále ionizují, čímž stupeň ionizace, a tím i vodivost prudce stoupá. Nemalou úlohu přitom hrají i tzv. gama procesy, tj. sekundarni emise elektronů z povrchu elektrody. Závislost tzv. zápalného napětí samostatného výboje na součinu tlaku plynu a vzdálenosti rovinných elektrod (p.d) udává tzv. Paschenův zákon, což je pro daný plyn plynulá křivka s jedním minimem pro určité p.d. Zápalné napětí lze snížit, pokud se poskytnou nějaké nabité částice navíc (tj. kromě těch, které si elektrony nebo ionty na své dráze nebo interakci s elektrodou samy "vyrobí"), např. ionizací prostoru mezi elektrodami zářením, aplikací dodatečného napětí na pomocnou elektrodu s ostrým hrotem umístěnou mezi hlavními elektrodami (tak se zapaluje fotografický blesk), termickou emisí elektronů z ohřátého povrchu katody (tak se zapaluje výboj v zářivce). Elektrická pevnost plynů je termín technický, který je v podstatě ekvivalentní termínu zápalné napětí. Moje představa o něm je ta, že se vztahuje k přesně definovanému tvaru elektrod, mezi kterými se tato pevnost měří, a udává se za daného, většinou atmosferického tlaku (pokud tedy výboj vznikne, bude to jiskrový výboj).

2/ Co se týče druhé otázky, ionizace pomocí laserového paprsku, tam odpověď závisí na energii fotonů a na celkové hustotě energie ve svazku. Vzhledem k tomu, že teď máme v ČR výkonný laserový systém PALS, který se používá na generaci plazmatu interakcí laserového paprsku s pevnou látkou, doporučuji podívat se na jeho www stranku (v češtině) http://www.pals.cas.cz/pals/pac001hp.htm.(Prof.RNDr. Milan Tichý DrSc. - 21.6.2002)

(M. Tichý)   >>>