FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 15 dotazů obsahujících »mrznutí«

6) Mrznutí vody za vyšších tlaků11. 04. 2007

Dotaz: Jak velký tlak vyvíjí voda, když zmrzne v těsném prostoru? (Václav Kadlec)

Odpověď: Tento tlak je obrovský. Jeho velikost můžeme odhadnout ze závislosti teploty tuhnutí vody na tlaku. Při atmosférickém tlaku je tato teplota 0 °C, při tlaku stokrát větším je asi -1 °C, při tlaku dvou tisíc atmosfér je to asi -20 °C. To znamená, že při tlaku 2000 atmosfér se začne led tvořit až při teplotě nižší než 20 °C pod nulou, při vyšších teplotách zůstává voda v kapalném skupenství.

Pokud vodu budeme chladit, ale nedovolíme jí zvýšit při krystalizaci v led svůj objem, bude se zvyšovat její tlak až k takové hodnotě, kdy při dané teplotě může voda stále ještě být v kapalném skupenství - pro teplotu -1 °C je to přibližně 100 atmosfér, pro -20 °C je tento tlak okolo 2000 atmosfér.

(Pavel Böhm)   >>>  

7) Kropení sadu02. 01. 2007

Dotaz: Proč sadaři při očekávaných mrazech udržují v době květu stromů celou noc nad korunami stromů vrstvu kapének vody? (Jirka)

Odpověď: Voda může namrzat na větvích stromů a funguje jako tepelná ochrana, díky velké teplotní kapacitě. Podstatná je jedna věc. Živý organismus stromů může utrpět velké škody (roztrhání buněk rostlinné tkáně) při rychlém rozmrzání. Samotné krátkodobé zmrznutí není tak fatální. A těmto škodám může právě zabránit ledový povlak, který podstatně zmírní rychlost teplotních změn a zmírní rychlost změn teploty rostliny. Je dobré si uvědomit, že nízké teploty v době kvetení stromů (s možnosti mrazíků) se vyskytnou při jasné obloze, kdy díky radiačnímu ochlazování zemského povrch a přilehlých vrstev vzduchu může v blízkosti zem. povrchu klesnout teplota pod bod mrazu. A ráno vysvitne Slunce a přechod od nízkých teplot k vyšším hodnotám (týká se to teplot dřeva) může být velmi rychlý. Právě ledový povlak tomu pak může zabránit.

(Josef Brechler)   >>>  

8) Celsiova, Fahrenheitova a Réaumurova stupnice11. 10. 2006

Dotaz: Dobrý den! Už mnohokrát jsem měřil teplotu nějaké látky v Celsiově stupnici. A slyšel jsem, že určení stupnice vzniklo tak, že se ve chvíli, kdy voda začala mrznout, vyryl bod 0 °C na teploměr a ve chvíli, kdy se začala voda odpařovat, označil se bod jako 100 °C. Ale slyšel jsem i o tom, že se dá měřit pomocí stupně Fahrenheita či Réaumura. Jak vznikla stupnice na teploměru pro tyto fyzikální veličiny a jaké jsou jejich přepočty na stupnici pana Celsia? Mockrát děkuji za odpověď a přeji Vám hezký den! (Tomáš Urbánek)

Odpověď: Cesliovu teplotní stupnici vytvořil v roce 1742 švédský astronom Anders Celsius, přičemž stanovil hodnoty 0 °C pro teplotu varu vody a 100 °C pro teplotu tání vody - tedy obráceně, než jsme zvyklí dnes. Do dnešní podoby stupnici upravil až o něco pozdeji švédský přírodovědec Carl Linné, když stupnici otočil (a tedy stanovil bod tání na 0 °C a bod varu na 100 °C).

Fahrenheitova teplotní stupnice je pojmenována po německém fyzikovi Gabrielu Fahrenheitovi, který roku 1724 stanovil teplotu 0 °F jako nejnižší teplotu, jíž se mu podařilo dosáhnout smícháním soli, vody a ledu a teplotu 96 °F jako teplota lidského těla. Později byly z praktických důvodů (přesněji a objektivněji je lze měřit) zvoleny referenční body 32 °F jako teplota mraznutí vody a 212 °F jako teplota varu vody. Dnes se Fahrenheitova teplotní stupnice používá například v USA. Je-li F teplota ve stupních Fahrenheita a C teplota ve stupních Celsia, potom platí převodní vztahy:

F = (9/5 * C) + 32
C = (F - 32) * 5/9

Réaumurova teplotní stupnice je pojmenovaná po francouzském přírodovědci René Réamurovi, který ji zavedl roku 1730. Svého času byla velmi rozšířená, dnes se již prakticky nepoužívá. Stupnice je definována opět pomocí bodu mrznutí vody (0 °R) a bodu varu vody (80 °R). Je-li R teplota ve stupních Réamura a C teplota ve stupních Celsia, pak platí:

R = 4/5 * C
C = R * 5/4

Poznámka: Všechny referenční teploty jsou udávány při normálním atmosférickém tlaku.

(Jakub Jermář)   >>>  

9) Podchlazená kapalina10. 02. 2006

Dotaz: Opakovaně se mi stalo následující. Na kuchyňské lince nevytápěné chaty v zimě stála láhev s vodou v PET láhvi. Na pohled byla voda v láhvi jednoznačně v kapalném skupenství. Při sebemenším pohybu láhve došlo prudce ke změně skupenství a voda v láhvi se přeměnila na led během zlomku sekundy. Připomíná mi to jev "utajený var". Existuje něco podobného jako "utajené zmrznutí"? (Ing. Petr Heimerle)

Odpověď: Ano. Voda skutečně nemusí zmrznout hned při dosažení teploty tání/mrznutí - tedy při 0°C. Často se nám ji podaří podchladit o několik stupňu, čistou destilovanou vodu se občas podaří podchladit třeba i na -20°C. Má-li kapalina teplotu nižší, než jaká odpovídá teplotě tání/mrznutí, mluvíme o tzv. podchlazené kapalině. Podchlazená kapalina je velice citlivá na přítomnost jakýchkoli příměsí i na mechanické vzruchy. Skutečně pak stačí třeba i malé drknutí do stolu a kapalina velmi rychle zamrzne.

(Jakub Jermář)   >>>  

10) Zamrznutí tlakového potrubí28. 01. 2006

Dotaz: Dobrý den. V podniku se nám stává, že nám zamrzá vodovodní talkové potrubí. Rád bych se zeptal jestli existuje nějaká grafická závislost bodů tuhnutí vody na tlaku vody. Uvažujeme tlak vody max. od 1 atm do 200 atm a teploty od cca -20°C do 0°C. (Petr Menšík)

Odpověď: Bod tuhnutí vody/tání ledu se s tlakem mění daleko méně výrazně než například bod varu. Při tlaku 20 MPa se sníží bod tuhnutí vody jen na -1,52 °C.

Zdroj: Wagner, W., Saul, A., and Pruss, A., J. Phys. Chem. Ref. Data, 23, 515, 1994.

(Pavel Böhm)   >>>