Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 1493 dotazů
1017) Difrakční obrazce
29. 04. 2003
Dotaz: To že jedna částice dokáže jakoby procházet dvěma štěrbinami a pak
interferovat sama se sebou je v učebnicích poměrně široce popisovaný
jev včetně ukázek výsledků konkrétních pokusů. Omlouvám se však za svou
lenost, že se touto cestou táži na nějaký odkaz na pokus, kdy se např.
zjišťovalo, že dostatečně slabé světlo ze dvou sesynchonizovaných
laserů neinterferuje, tedy jinak, že míra interference záleží na
intenzitě a jaká je tato závislost. (Jan Dostál)
Odpověď: Tady je záludné, co myslíte sesynchronizovanými lasery (při frekvenci
řádově 1015 Hz...) Difrakční obrazce na štěrbinách byly spolehlivě
získány
světlem natolik ztlumeným, že jeho jednotlivé fotony byly od sebe vzdáleny
desítky metrů. Tyto pokusy mj. přesvědčivě vyvrátily snahu interpretovat
interferenční obrazce jako "kolektivní záležitost". Zde nebylo vůbec
podstatné, zda ony fotony byly z jednoho či více zdrojů.
Ovšem pro seriózní uvažování (nikoli pro povídání o zajímavostech
ze světa nad kávičkou) je potřeba vzít tužku a papír a počítat; a pak
navrhnout a provést pokus, který by byl počítaným problémem popsán a řešen.
To, že interferenční obrazce stejného typu (lišící se ovšem délkou vlny)
dostáváme pro světlo (fotony), elektrony i dokonce pro molekulové svazky,
zřejmě svědčí o vlnové podstatě i toho, co by v klasickém pojetí měla být
částice.
Dotaz: Stále mi vrtá hlavou, co je to vlastně oheň; jak by se dal fyzikálně
definovat? Je to něco jako forma plazmy? (Petr)
Odpověď: Ono je to v životě vždycky tak, že "běžné pojmy" jsou pěkně složité na
definování - a člověk si pak i říká, k čemu by taková definice byla,
abychom nesklouzli do nějakých formálních klasifikací namísto obsahu. Asi
máš na mysli plamen - to je přece jen užší, konkrétnější pojem. Je to
"obláček" plynu, na povrchu obláčku tak žhavého, že už zřetelně září, a je
na povrchu tvořen plynem už částečně ionizovaným, tedy plazmou (značně
nízkoteplotní). Energii ke vzniku a k záření mu dodává chemická reakce v
něm probíhající, tedy hoření u povrchu, v oblastech, kde je hořlavý
materiál už difuzí smíchán s okolním vzduchem v koncentraci dostatečné pro
zahájení a udržení chemické reakce. Že plamen je věc značně pomíjivá - to
je zřejmé už z toho, jak poskakuje, mihotá se, třepoce a já nevím, co ještě.
To, co svými pomalými smysly vnímáme, je zrakový vjem podpořený
setrvačností oka; mikrofotografie plamene jsou zajímavé a "nepodobné" tomu,
co známe.
Dotaz: Zajímalo by mě, jak vypočítat potřebný kroutící moment pro protočení
zamrzlé elektromagnetické brzdy. Brzda se skládá z rotoru a dvou třecích
desek s mezikruhovým stykem. Desky jsou k sobě v klidu tlačeny pružinami.
Při normálním startu se pružiny odlehčí elektromagneticky, ale při zamrznutí
je elektromagnet slabý a proto pružiny dále tlačí na desky. Protože se
jedná o přimrznutý vodní film nevím si s takovým výpočtem rady. (Roman Dostál)
Odpověď: Je to podobné, jako když máte pružnost v tahu a pružnost ve smyku; pokud
jde o kroucení, pak musíte uvážit, že namáhání je přímo úměrné vzdálenosti
od osy. Vám jde nikoli o pružnost, ale o pevnost ledu - tedy kdy namáhání
překročí pevnost materiálu. Princip je ale úplně stejný. Záleží taky
samozřejmě na síle vrstvy - vzpomeňte si, že pořádné lepidlo lepí tím líp,
čím míň ho mezi lepenými plochami je, takže tady máte navíc nejen "vnitřní"
pevnost (houževnatého) materiálu, ale i přechodové vlastnosti mezi oběma
materiály na styčné ploše. Ale skoro bych řekl, že experimentálně se oboje
(pevnost v kroucení i pevnost ve smyku) bude určovat prakticky stejně
obtížně či snadno.
Dotaz: Chtěl bych se zeptat, jestli nevíte něco o problematice měření el. náboje
a malých napětí. (Mirek Maroušek)
Odpověď: Milý Mirku,
velikost elektrického náboje poprvé změřil Millikan. Jeho pokus už je v
Odpovědně popsán (napište do vyhledávacího okénka heslo Millikan).
Millikan v letech 1913-1917 prokázal Thomsonův předpoklad, že hmotnost
vodíkového iontu je asi dvěstěkrát větší než hmotnost elektronu. Vyrobil
speciální Millikanův kondenzátor, kterým měřil elektrické náboje malých
olejových kapiček, a zjistil, že náboj elektronu je elementárním kvantem
jakéhokoliv elektrického náboje.
Věnoval se i měření Planckovy konstanty, kterou určil na základě měření
frekvence a energie elektronů, vycházel přitom z fotoelektrického efektu.
Na další informace se podívejte například na stránku:
http://www.pef.zcu.cz/pef/kof/cz/di/pks/PROGRAMY/millikan/millikan.doc .
O měření napětí se dočtete například tady:
http://lucy.troja.mff.cuni.cz/~tichy/kap4/4_1.html . Další spousty stránek
na toto téma najdete, když do googlu napíšete heslo "low voltage
measurements".
Malá napětí se nejlépe měří pomocí digitálních multimetrů, podrobnosti o
jejich vlastnostech se dozvíte na stránce:
http://www.sapro.cz/sorti/digimetr.html .