FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 1493 dotazů

1316) Energie z vakua ?12. 08. 2002

Dotaz: Fenomén MEG a další zařízení čerpající energii z "vakua" - přibližně jako tepelné čerpadlo z obecně známého "reálného" prostředí. (tata)

Odpověď: Četl jsem číslo WM magazínu, kde p. Hála rozebírá, proč je "čerpání energie z vakua" nesmysl. Emotivní a nevěcná reakce pana Jiřího Wojnara mne jen ujišťuje v tom, že WM magazín není seriozní zdroj informací.
(J.Obdržálek)   >>>  

1317) Hmotnost elektronu12. 08. 2002

Dotaz: Chtěl bych vás poprosit o odkazy na podrobné informace ohledně otázky: Má elektron hmotnost? (Jiří Holas)

Odpověď: Elektron objevil v roce 1897 britský fyzik J.J. Thomson při zkoumání katodového záření. Klidová hmotnost elektronu je me = 9,109534 . 10-31kg. Hmotnost elektronu se vzrůstající rychlostí roste. Můžete ji vypočítat podle vztahu :
m = m0/ (1-(v/c)2)1/2 , kde m0 je klidová hmotnost elektronu, v je jeho rychlost a c je rychlost světla. Podle tohoto vzorce můžete samozřejmě spočítat hmotnost jakéhokoli tělesa pohybujícího se rychlostí v, jetliže znáte jeho klidovou hmotnost (při v = 0 m/s).
Zajímavé informace o elementárních částicích se můžete dočíst na adresách: http://www-hep2.fzu.cz/~rames/outreach/mikro2.pdf, http://www-hep2.fzu.cz/~rames/outreach/castice.html, http://www.aldebaran.cz/astrofyzika/interakce/particles.html, http://www.volny.cz/martin.korous/hmota/hmota.html, http://bfu.lf2.cuni.cz/cz/inka.html, konkrétně o elektronu např. na adrese: http://candra.hyperlink.cz/diplomka/rejstrik/hmotnost_elektronu.htm. Stačí do vyhledávače napsat heslo "hmotnost elektronu" nebo jen "elektron" a pak si jen vybrat.
(M.Urbanová)   >>>  

1318) Vlastní indukce05. 08. 2002

Dotaz: Kde v technické praxi se můžeme setkat s využitím vlastní indukce a přechodového děje (s těmito pojmy se setkáváme v nestacionárním magnetickém poli)!? (Elena)

Odpověď: Eleno, podívejte se na základní učebnici obecné fyziky FYZIKA (Halliday, Resnick, Walker, vydal Prometheus 2001). Tam to máte i s obrázky a fotografiemi - např. kterak Jimi Hendrix se svou elektronickou kytarou za použití elektromagnetické indukce na rockové scéně šedesátých let zářil (kap. 31, str. 798 - 832, Elektromagnetická indukce.
Přechodné děje v nestacionárním elektromagnetickém poli hledejte všude, kde se něco VYZAŘUJE - tj. kde přechází energie odněkud do pole (anebo zpět): Hertzův dipól = model antény, záření urychleně se pohybující nabité částice apod.
(J.Obdržálek)   >>>  

1319) Povrchové napětí05. 08. 2002

Dotaz: Čím a jak je možno měřit povrchové napětí na plastových výrobcích? (Václav Matoušek)

Odpověď: Pokud rozumím správně otázce, pak by se povrchové napětí kapalin na plastových výrobcích mělo dát měřit tak jako na libovolném jiném materiálu, např. z kapilární elevace či deprese. Míníte-li jiné povrchové vlastnosti, a to materiálu samotného (např. povrchový elektrický odpor či svod), pak je precizujte.
(J.Obdržálek)   >>>  

1320) Rentgenové záření05. 08. 2002

Dotaz: Prosím Vás, je pravda, že za působení většího napětí na elektronovou trysku z televize nevyletují elektrony, ale rentgenové záření? Jak velké by muselo být napětí? (Dave)

Odpověď: Milý kolego, v běžných rentgenech vzniká rentgenové záření tím, že intenzivní paprsek urychlených elektronů dopadá na materiál (např. tepelně odolný kov s vysokým Z), brzdí se v něm a tím budí brzdné rentgenové záření (rentgenové záření odnáší jen část absorbované energie, proto musí materiál něco vydržet a ještě být chlazen). Vyrábí se na to speciální součástka, "rentgenka". Spektrum rentgenového záření závisí na energii dopadajících elektronů - elektrony letící obrazovkou s energií lehce nad 10 keV, které se zabrzdí v luminescenční vrstvě a případně skle, budí také rentgenové záření, ale tak měkké, že tloušťka např. hliníku potřebná na jeho zeslabení na polovinu ("polotloušťka") je něco kolem desetiny milimetru (takže tlusté sklo obrazovky ho prakticky pohltí), pro praktické účely, např. rentgenování zlomených kostí, je potřeba mít urychlovací napětí desítek kV, např. pro 100 keV je už buzené rentgenové záření tak pronikavé, že odpovídající polotloušťka hliníku je 1,6 cm.

Je to takto:
1) Napětí mezi rozežhavenou katodou obrazovky a okolím vytváří elektrické pole v okolí katody. Je-li toto pole dostatečně silné, vytrhne z ní elektron; část energie (tzv. výstupní práce) se přitom použila na "vytržení" elektronu z materiálu katody, zbytek si nese elektron s sebou jako kinetickou energii. V oblasti energií v televizoru nám stačí počítat nerelativisticky, tedy kinetická energie je rovna Ek = 1/2 m v2. Nic jiného z katody nevylétává.
2) Elektron je dále urychlován a usměrňován elektrickým i magnetickým polem v obrazovce, až dopadne na příslušné místo stínítka. Během svého letu neztrácí energii žádným vyzařováním. (To by přicházelo v úvahu až v mnohem mohutnějších zařízeních typu synchrocyklotronu s mnohem většími energiemi.)
3) Dopadem na příslušné místo stínítka se elektron zabrzdí. Část jeho energie se spotřebuje mechanismem, který vede k tomu, že stínítko na tom místě zasvítí, zbytek energie se promění dílem na zahřátí a deformaci prostředí, kam elektron dopadl, dílem na elektromagnetické záření, tzv. brzdné záření. To má dvě výrazně rozlišné části - spojité spektrum vznikající principiálně vždy, když se elektricky nabitá částice urychluje (anebo brzdí, to je prostě urychlování se záporným znaménkem), a čárové spektrum, určené materiálem, v němž se elektron brzdí. Část brzdného záření padne i do rentgenových oblastí elektromagnetických vln ("měkké rentgenovo záření"), ovšem je poměrně slabá. Urychlující napětí obrazovky je deset až pětadvacet tisíc voltů, což není zas pro tento účel tak moc, záření se na své další cestě pohlcuje a samozřejmě na rozdíl od rentgenky je obrazovka koncipována tak, aby rentgenova záření k divákovi došlo co nejméně.

(J.Dolejší,J.Obdržálek)   >>>