FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 1493 dotazů

959) Pneumatiky a tření01. 07. 2003

Dotaz: Kamarád má názor, že širší pneumatiky na vozidle zvyšují tření a tudíž jsou více kluzké na vozovce, nežli pneumatiky užší. Je tento názor správný? (Pavel)

Odpověď: Tření mezi pneumatikou a vozovkou, přesněji třecí síla, kterou působí vozovka na pneumatiku je hnací silou automobilu (vyprovokovanou samozřejmě motorem). Větším třením se samozřejmě snižuje nebezpečí skluzu (smyku). Proto jsou pneumatiky závodních automobilů širší než je obvyklé u běžných aut a jsou přilnavější a proto se rychle opotřebovávají a musí být během jednoho závodu měněny.
(M.Rojko)   >>>  

960) Stabilita při jízdě na kole27. 06. 2003

Dotaz: Co je fyzikální podstatou stability při jízdě na kole? Je nesporným faktem, že udržet rovnováhu na kole při jízdě, a to i při velmi malých rychlostech, je daleko snazší než v klidu, tedy při nulové rychlosti. Na druhé straně otáčivý moment samotných kol jízdního kola při malých rychlostech, výše zmíněných, bude asi docela malý. Podílí se na zvýšení otáčivého momentu kol jízdního kola i hmotnost cyklistů nebo stačí našemu mozku malý otáčivý moment samotných kol na překonání problému s rovnováhou? (Ales Vetesnik)

Odpověď: Příčinou je vlastnost roztočeného kola, které, pokud na něj nepůsobí síly, udržuje osu své rotace stále ve stejném směru a nemění ani rychlost. Tato vlastnost roztočeného kola, jakýsi “odpor” ke změně způsobu rotace trochu připomíná setrvačnost puku letícího po ledě, který na rovném ledě prakticky nemění směr a velikost rychlosti svého pohybu, pokud na něj ovšem nepůsobí síla - např. hokejka brankáře. Jestliže u puku mluvíme o jeho setrvačnosti, u roztočeného kola bychom asi mohli mluvit o “rotační setrvačnosti”.
Celý článek o stabilitě na jízdním kole si přečtete zde .
(M.Rojko)   >>>  

961) Fatamorgána27. 06. 2003

Dotaz: Já bych se chtěla zeptat, jak vzniká fatamorgána? (monika)

Odpověď: Vzduch i v plném slunečním světle se nezahřívá přímo světlem, které skrz něj prochází, ale nepřímo, o látky, které světlo pohlcují, tím se zahřejí a od nich se zahřeje i vzduch. Těsně nad prohřátým povrchem země (v našich podmínkách úplně stačí asfaltová silnice rozpálená sluncem) se tedy velice zahřeje vzduch, roztáhne se, zřídne a má nižší index lomu než ten chladnější nad ním. Při přechodu světelného paprsku letícího šikmo dolů ze studeného do teplého vzduchu se tedy paprsek láme od kolmice, tj. stává se méně šikmým a může se tak i otočit směrem vzhůru. To ovšem znamená, že hledíce do dáli na zem, vidíte nikoli zem, ale oblaka - resp. zdá se vám, že je na silnici kaluž vody, na které by se to světlo odráželo. Když ovšem přijedete blíž, vidíte, že se žádná kaluž nekoná a že je tam země vyprahlá stejně jako vy...
(J.Obdržálek)   >>>  

962) Struktura protonu a dalších částic21. 06. 2003

Dotaz: Zajímalo by mě z čeho je složen proton? Popřípadě z čeho jsou další elementární částice? V podstatě mi jde o to co je to za hmotu a jak vlastně vypadá? (Miloš Pařízek)

Odpověď: Stručně lze říci, že proton je složen z kvarků. V současnosti známe šest kvarků, které se liší nábojem, hmotností a dalšími vlastnostmi.
nábojKvarky
2/3 Up Charm Top
-1/3 Down Strange Botton
(náboje jsou uváděny v násobcích absolutní hodnoty náboje elektronu)
Existuje celá spousta částic (tzv. baryony, řecky βαρυοσ - těžký), které se skládají ze tří kvarků: proton je složený z kvarků uud, neutron z ddu apod. (zkuste si sečíst náboje těchto kombinací, sedí s náboji protonu a neutronu!)
Vedle toho existují částice zvané mezony (řecky μεσοτρον - střední, podle toho, že mají hmotnost mezi hmotností protonu a elektronu), které lze vysvětlit jako kombinace kvarku a antikvarku, například pion π+ jako u anti-d.
Částice složené z kvarků obecně nazýváme hadrony (řecky 'αδροσ - silný, neboť jsou citlivé na silnou interakci), známe jich dnes stovky a liší se obsahem kvarků a tím, jak se uvnitř kvarky "hemží".

Jak jsme zjistili, z čeho se proton skládá? To lze provést například v experimentech, kdy ostřelujeme proton elektrony. Proton se choval jako objekt složený z více částic, od kterých se elektron odrážel.

Vedle částic složených z kvarků jěště známe další, kam patří i známý elektron, a souhrně je označujeme jako leptony (řecky λεπτοσ znamená lehký). Jde o elektron a jemu podobné částice mion a tauon (jakési těžší varianty elektronu) a neutrina, velmi lehké částice bez náboje.
nábojLeptony
0 νe νμ ντ
-1 elektron e mion μ tauon τ
Za elementární částice dnes považujeme právě kvarky a leptony, které se v experimentech zatím jeví jako bez další vnitřní struktury.
Další elementární částice jsou ty, které zprostředkovávají interakce mezi částicemi, jde o foton, bosony W, Z a gluony.
Pro další informace se podívejte do sekce Atomy, jádra, částice v naší Odpovědně, případně si zde vyhledejte pojem "kvarky".
Dalším užitečným zdrojem je populární text o standadním modelu mikrosvěta od J. Hořejšího.
Pěkná je též knížka Pan Tompkins stále v říši divů od George Gamowa, jejíž nové vydání doplněné Russelem Stannardem se zabývé též částicovou fyzikou.
(J. Kvita)   >>>  

963) Kavitace19. 06. 2003

Dotaz: Existují reálné kapaliny, které mají tlak par roven tlaku vakua? Tedy, že škrcením jejich průtoku za žádných podmínek nedojde ke kavitaci. Pokud ano, patří k nim např. VGO (Vacuum Gas Oil)? (Jaroslav Habán)

Odpověď: Myslím, žejde o neporozumění. "Tlak vakua" je samozřejmě 0, podle definice vakua; to by asi doslovně možné nebylo. Prakticky by tedy šlo o kapalinu, jejíž tlak par je za zamýšlené teploty zanedbatelný. Tomu by asi nejlépe vyhovovaly oleje užívané ve vakuové teplotě.
Ovšem kavitace je způsobena tím, že pod vlivem velkého a náhlého gradientu sil a tím i rychlostí se kapalina "roztrhne", tj. vzniknou v ní dutiny. Jejich vznik nesouvisí s tím, že vzápětí poté se do tohoto "bublinového vakua" vypařuje okolní kapalina. Myslím, že (rovnovážné) napětí par nad kapalinou mnoho neřekne o jejím chování při prudkých změnách, které jsou příčinou kavitace.
(J.Obdržálek)   >>>