Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 13 dotazů obsahujících »částicí«
2) Závislost tlaku na nadmořské výšce
08. 04. 2008
Dotaz: Pěkný den Chtěl bych se zeptat jak bude vypadat závislost atmosferického
tlaku na nadmořské výšce při adiabatickém chování. Pokud možno uveďte
prosím i nějaké vysvětlivky z jakých zákonů a vztahů se vycházý. Díky
moc (Marek Hušek)
Odpověď: Pod adiabatickým chováním neboli procesu nedochází k výměně tepla mezi vzduchovou částicí (pomyšlený malý objem vzduchu s homogenní teplotou, tlakem, hustotou i vlhkostí) a okolním vzduchem. Při vertikálním pohybu takové částice tedy platí zjednodušená podoba I. Termodynamického zákona: dU = -pdV, kde dU znamená změnu vnitřní energie, p je tlak vzduchu a dV odpovídá změně objemu vzduchové částice. Z tohoto vztahu lze po úpravě využitím stavové rovnice ideálního plynu (za jaký lze vzduch považovat): pV = mRT (m je hmotnost vzduchové částice, R je měrná plynová konstanta vzduchu při obvyklém složení a T je teplota), odvodit tzv. Poissonův zákon
(1)
kde představuje poměr molární tepelní kapacity při stálém tlaku a molární tepelní kapacity při stálém objemu. Další často používaný tvar Poissonova zákona vyjadřující vztah mezi tlakem p a teplotou T:
(2)
Dále využijeme rovnice hydrostatické rovnováhy
(3) dp = -ρgdz
kde ρ značí hustotu vzduchu, g je gravitační konstanta, dp a dz představují změnu tlaku a výšky. Tato rovnice platí s dobrou přesností při běžných meteorologických podmínkách a přestává pouze za intenzivních vertikálních pohybů s vyššími hodnotami zrychlení.
Derivací vztahu (2), kombinací se vztahem (3) a následnou integrací podle tlaku a výšky lze dospět k rovnici vyjadřující závislost tlaku na nadmořské výšce v adiabatické atmosféře.
(4)
kde a odpovídají tlaku a teplotě na zemském povrchu, je plynová konstanta pro suchý vzduch ( = 2.870×102 J/(kg*K)), cpd je měrná tepelná kapacita suchého vzduchu při stálém tlaku ( = 1005.7±2.5 J/(kg*K)) a g značí gravitační konstantu.
Dotaz: Dobrý den, mám jeden dotaz ohledně kosmického záření. Jaká je jeho vlnová délka?
děkuji za odpověď! (Klára)
Odpověď: Jako kosmické záření se obvykle označují hlavně proudy protonů a dalších rychle se pohybujících částic pocházejících jak ze Slunce, tak galaktického i extragalaktického původu. Jejich energie a rychlosti jsou přitom značně různé, nemá tedy smysl ani mluvit o nějaké konkrétní de Broglieho vlnové délce, ktrou bychom těmto částicím mohli připsat.
Odpověď: Ano a ne, jak se to vezme. Zatímco antičásticí k elektronu je pozitron a třeba k protonu je antiproton, k fotonu ("částici" světla) je antičástice zase jenom foton. Foton je tedy antičásticí sám k sobě a z tohoto pohledu nemá smysl rozlišovat mezi světlem a antisvětlem. Pojem antisvětlo se proto vůbec nepoužívá.
Částic, které jsou identické se svými antičásticemi, existuje více. Příkladem může být třeba intermediální bozon Z0. Jelikož částice mají opačný náboj než k nim příslušné antičástice, jsou všechny takové částice (foton, Z0, ...) elektricky neutrální. Existují však i elektricky neutrální částice, k nimž od nich odlišitelné antičástice existují, například dvojice neutron - antineutron.
5) Mají intermediální bosony W+, W- a Z0 antičástice?
18. 09. 2006
Dotaz: Mají intermediální bosony W+, W- a Z0 antičástice? (Doc.Ing.Jaromír Bár,CSc)
Odpověď: Ano, ke všem třem těmto částicím existují jejich protějšky, a to takto: W+ je antičásticí k W- (a tedy i naopak W- je antičásticí k W+), Z0 je pak antičásticí samo k sobě.
Intermediální bosony W+, W- a Z0 zprostředkovávají tzv. slabou interakci (příkladem může být β rozpat neutronu). Slabá interakce má pouze konečný dosah a podsvětelnou rychlost šíření, neboť tyto částice mají nenulovou klidovou hmotnost 80,4 GeV (W+, W-) a 91,2 GeV (Z0).
Dotaz: Chtěl bych se zeptat jestli když se vytvoří antihmota zůstává neutron pořád
neutrální nebo se mění jako např. elektron na kladný pozitron a jak se dá v
našich podmínkách uchovat antihmota (aby nedošlo k anihilaci)??? Děkuji (Tomek Martin)
Odpověď: Částici antihmoty odpovídající neutronu nazýváme antineutron. Je stejně jako neutron sám elektricky neutrální. Od neutronu se ale antineutron liší opačným směrem svých magnetických polí vzhledem ke směru svých spinů a rovněž opačným znaménkem baryonového náboje (nezaměňujme přitom baryonový náboj a nám asi známější elektrický náboj - jde o dvě zcela různé vlastnosti částice, které spolu nijak přímo nesouvisí).
Uchovávání antihmoty (i samotných antičástic) je velice problematické. Je potřeba vytvořit vysoké vakuum a zároveň zabránit částicím, aby narážely na stěny nádoby (kde by samozřejmě ihned anihilovaly). U eketricky nabitých částic to umíme zařídit pomocí vhodně tvarovaného silného elektrického či častěji magnetického pole (tzv. magnetická past). Princip, který by umožňoval dlouhodobé přechovávání elektricky neutrálních částic, mi není znám.
Více se o antihmotě dozvíte například na stránkách časopisu Vesmír