|
|
Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 12 dotazů obsahujících »atmosférického«
3) Sytá vodní pára | 16. 02. 2007 | Dotaz: Dobrý den, máme dvě nádoby stejného objemu, ve kterých je voda, rovněž stejného
objemu (přičemž voda nezabírá celý objem nádoby). V jedné nádobě je nad hladinou
vody vzduch a v druhé je vzduch vypuštěn, tzn. nad hladinou vody se nachází
pouze vodní páry. Můj dotaz zní: bude v nádobě, ve které není vzduch, větší
množství vodních par, nebo bude v obou nádobách stejné množství vodní páry (nad
vodní hladinou)? (petr) | Odpověď: V nádobě, v níž je v rovnovážném stavu voda se svými parami, je tzv.
dynamická rovnováha. To znamená, že ačkoliv z makroskopického pohledu se
nic nemění (množství kapalné a plynné fáze je pořád stejné), na
mikroskopické úrovni se něco děje: molekuly vody se neustále chaoticky
pohybují, občas některá "vyskočí" z kapaliny a stane se součástí par
("vypaří se"), jindy se zase molekula páry vrátí do kapaliny
("zkondenzuje").
Rovnováha závisí tedy na tom, jak "husto" je molekul vodní páry v plynné
fázi nad kapalinou - pokud příliš mnoho, kondenzují, pokud příliš málo,
nastává vypařování z kapalné fáze. Přitom nezáleží na tom, mezi čím se
tyto molekuly vodní páry pohybují - zda mezi částicemi vzduchu, ve
vzduchoprázdnu nebo v jakémkoli jiném plynu; záleží pouze na jejich
množství v jednotce objemu. Selským rozumem usoudíme, že nemůže být tak
úplně jedno, zda se molekuly pohybují mezi "ničím" nebo mezi částicemi
vzduchu - ale za běžných podmínek je jakýkoli plyn natolik "řídký", že
částice v něm se pohybují dostatečně volně.
Je-li ve Vašich nádobách stejné množství kapalné fáze a v obou případech
jde o rovnovážný stav, musí v nich být také stejná množství vody v
plynném skupenství, v důsledku tedy stejný tlak molekul vodní páry. Liší
se pouze celkový tlak nad kapalinou v nádobě - v jednom případě je
plynná fáze tvořena pouze vodními parami, v druhém stejným množstvím
vodních par a navíc ještě vzduchem, takže celkový tlak je zde vyšší,
tvořený součtem tzv. parciálních (částečných) tlaků jednotlivých složek
(vodní pára, kyslík, dusík, oxid uhličitý... ).
A jaký je tlak syté vodní páry, tedy páry v dynamické rovnováze s
kapalnou vodou? To závisí na teplotě. Např. při 10 °C je to asi 1,2 kPa
(setina atmosférického tlaku), při 50 °C asi 12 kPa, při 100 °C je to
akorát atmosférický tlak a při 120 °C je to asi 2,5 násobek
atmosférického tlaku.
| (Pavel Böhm a Hanka Böhmová) | >>> |
4) Výbuch pod vodou | 08. 12. 2006 | Dotaz: Četl jsem něco o akustické impedanci v souvislosti s výbuchy pod vodou. Na
přechodu tlakové vlny mazi látkymi s různou AI (měkká tkáň-kost) se uvolňuje
energie a ta "poškozuje" živočichy ve vodě. V jaké formě je ta energie a jak
vůbec celý děj probíhá? Děkuji (matěj) | Odpověď: To jsou trochu vágní informace s "uvolňováním energie". Především akustické veličiny (jako třeba impedance) jsou míněny pro akustické účely, tedy v lineárním přiblížení, jehož oprávnění je dáno velikostí akustických tlaků (od nějakých 10-5 Pa do 20 Pa, oproti 101 325 Pa obyčetného atmosférického tlaku). Při výbuchu pod vodou určitě jde o hodnoty tlaků podstatně větší než akustické, zaména ví-li se, že při nich dojde k poškození živé tkáně.
Tady bych to vyšetřoval prostě jako odraz vlny na rozhraní dvou prostředí (tkáň-vaz, resp. vaz-kost) a podíval se na to, jaká maximální napětí tam budou u hranice - zda se tedy to od kosti může odtrhnout anebo ne.
Další otázka je, zda tkáň snese bez poškození vůbec průchod vlny s tak ostrým náběhem i amplitudou, jaké jsou při explozi pod vodou.
| (Jan Obdržálek) | >>> |
5) Vliv tlaku na tuhnutí vody | 09. 10. 2006 | Dotaz: Zdravím. Chci se zeptat, jaký vliv má na bod tuhnutí vody tlak? Konkrétně cca
4-5 bar, tj. jaký je bod tuhnutí při tomto tlaku?? J.Z. (Jarda Z.) | Odpověď: Tlak má vliv velmi malý (mnohem menší než na bod varu). Při desetinásobku
atmosférického tlaku je pokles bodu tuhnutí jen asi šest setin stupně
Celsia, jak je uvedeno v následující tabulce.
Závislost bodu tání/tuhnutí vody na tlaku |
tlak (MPa) | teplota (°C) |
0,1 (atmosférický tlak) | 0,00 |
1 | -0,06 |
2 | -0,14 |
3 | -0,21 |
4 | -0,29 |
5 | -0,36 |
10 | -0,74 |
50 | -4,02 |
100 | -8,80 |
150 | -14,40 |
200 | -20,69 |
Zdroj: CRC Press. CRC Handbook of Chemistry and Physics. 82nd edition. CRC
Press, 2001. ISBN 08-4930-482-2.
Pro tlak 5 bar, tedy 0,5 MPa, v těchto tabulkách teplota tání/tuhnutí
uvedena není. Je ale zjevné, že pokles je v běžných případech zcela
zanedbatelný. Pokud by Vás přesto zajímal tlak právě při 0,5 MPa, ještě se
ozvěte, pokusíme se to dopátrat.
| (Pavel Böhm) | >>> |
6) Tlak pod vodou | 12. 09. 2006 | Dotaz: Pracuji v obchodě s hodinkami a stále nevím, jak je to s tlakem pod vodou. Uvádí
se, že hodinky např. označené 50M = 5atm. Mně se to jeví jako podezřelé, protože
podle dalšího vysvětlení tyto hodinky můžete jen ponořit do vody (povrchové
plavání), ale není možné s nimi skočit do vody nebo se potápět. Jsem absolutní
laik, ale byla bych moc ráda, kdyby mi to někdo jednoduše osvětlil. Jaký je tedy
tlak pod vodou a jak to srovnat s označením pro hodinky. Předem děkuji. Nada (nada) | Odpověď: Ve vodě je potřeba počítat s hydrostatickým tlakem, který je součinem hloubky pod hladinou h, hustoty vody ρ a tíhového zrychlení g
hydrostatický tlak=h·ρ·g
Výpočtem se tedy můžeme přesvědčit, že na každých 10m ponoření ve vodě se skutečně tlak zvýší přibližně o hodnotu atmosférického tlaku (standardní atmosférický tlak při povrchu Země je okolo 105Pa). I já bych tedy předpokládal, že s hodinkami označenými 5atm je možné se bezproblému potápět i nekolik desítek metrů. Dotaz proč tomu tak není a proč jsou přesto hodinky takto označeny tedy bude rozumné směřovat na konkrétního výrobce hodinek.
| (Jakub Jermář) | >>> |
7) Změny tlaku vzduchu | 28. 06. 2006 | Dotaz: Proč se mění tlak vzduchu, resp. co v atmosféře způsobuje kolísání její
hmotnosti nad určitým územím ? (Václav Petráček) | Odpověď: Dějů, které způsobují změnu atmosférického tlaku je celá řada. Při stacionární situaci, kdy se moc nemění "velkoprostorové" rozložení tlakových útvaru v atmosféře, je možné pozorovat denní chod tlaku, který je určen jednak působícími slapovými silami (přitažlivost Slunce a Měsíce - stejně jako příliv a odliv u moří a oceánů) a dále i ohřevem atmosféry od dopadajícího slunečního záření. Dalším fakrorem je proudění, které jednak transportuje vzduch různých vlastností, tedy i teploty a tudíž i tlaku (platnost stavové rovnice) ve smyslu všeobecné cirkulace atmosféry a dále jsou důsledkem proudění i dynamické změny tlaku, jako je například vytváření závětrných tlakových útvarů za pohořími (závětrné brázdy nebo tlakové níže). Jak už jsem řekl, vše je podstatně složitější, neboť atmosféra je třídimenzionální, v čase se vyvijeici prostředí a děje ve středních a vysokých partiích troposféry souvisejí s jejími projevy u zemského povrchu.
I zde bych doporučil případnou literaturu v českém jazice:
- Jan Bednář: Meteorologie. Úvod do studia dějů v zemské atmosféře. Portál 2003
- Jaroslav Kopaček, Jan Bednář: Jak vzniká počasí. Karolinum 2005
kde je vysletlena řada věcí bez nutné znalosti partií vyšší matematiky.
| (Josef Brechler) | >>> |
|