Dotaz: Mám dvě otázky. První se týká elektrolýzy, která probíhá v rozříznutém
citrónu za pomoci Cu a Zn elektrody (pokus ZŠ). Zajímalo by mě, jaké
reakce probíhají uvnitř citrónu.
Dál bych ráda věděla něco bližšího o působení rezistorů v el. obvodu.
Pokud předpokládám, že el.proud je proud elektronů, jakým způsobem rezistor
proud zmenší? Domnívám se, že nějakým (mě neznámým) způsobem "pohlcuje"
volné elektrony. Mohli byste napsat něco bližšího? (M.Vaněčková)
Odpověď: 1. Funkce galvanického článku je založena na přechodu iontů kovu elektrod do
elektrolytu. V daném případě se vytvářejí zřejmě soli kyseliny citrónové,
případně další i složitější organické soli. Článek by pracoval i s vodním
roztokem NaCl, jak to předváděl Alessandro Volta v roce 1800. Sestavil řadu
kovů podle rostoucího kontaktního potenciálu a podle této rady lze vybrat
materiály pro galvanické články. Napětí naprázdno by mělo tedy záviset jen
na materiálu elektrod, kontaktní potenciál je obrazem elektronové struktury
atomu. Kvalita článku, tedy jeho vnitřní odpor a tím i svorkové napětí při
odběru proudu, závisí pak na elektrolytu. Jak lze článek krátkodobě zatížit,
jak je odolný proti samovybíjení je zase další technologický problém. Dnešní
články jsou výsledkem intenzívních snah fyzikálních chemiků a mají stále
menší rozměry a dávájí stále větší výkony. Hodně v této oblasti, myslím,
pracuje Ústav fyzikální chemie a elektrochemie J. Heyrovského AV ČR.
2. Proud ve vodiči je výsledkem vzájemného působení mezi elektrony a zejména
mezi elektrony a atomy materiálu. Ohmův zákon ve svém prostém tvaru skrývá v
sobě složité mechanismy těchto interakcí. Elektrony jako částice s
elektrickým nábojem by se v elektrickém poli měly pohybovat se stále
rostoucí rychostí, tedy rovnoměrně zrychleně. Skutečnost, že proud se za
velmi krátký čas (řádově 10-14 s) ustálí na stacionární (časově
neproměnné) hodnotě, je důsledek právě těchto interakcí. V kovech v
pokojových teplotách převládá rozptyl elektronů na atomech (nebo iontech)
kmitajících kolem rovnovážných poloh. Čím větší je teplota, tím více atomy
kmitají a tím je odpor kovů větší. V nízkých teplotách se uplatní rozptyl
elektronů na nepravidelnostech mřížky (různé atomy ve slitinách), poruchách
mřížky (vakance, dislokace, hranice zrn) a je proto teplotně nezávislý.
Odpor kovů tedy v nízkých teplotách neklesne k nule ale k nějaké teplotně
nezávislé hodnotě. Výjimku tvoří supravodiče, v nichž proud vedou spárované
elektrony - kuperony, které efektivně s mřížkou neinteragují a odpor tedy
klesne na čistou nulu. V polovodičích závisí odpor především na množství
nositelů náboje - elektronů nebo děr, které mají dostatečnou tepelnou
energii k překonání energetické bariéry zakázaného pásu energií. Odpor
polovodičů s rostoucí teplotou klesá.
Elektrony tedy v rezistoru ztrácejí energii, kterou předávají mřížce atomu,
která se tím zahřívá. Říká se tomu Jouleův jev a Jouleovo teplo. Takhle topí
přímotopy a hřeje i žárovka, kromě svícení, což je jiná forma přemeny
energie elektronů. Elektrické náboje se nemohou nikde ztrácet, platí zákon
zachování náboje.
Dotaz: Chtěla bych se zeptat, kde bych se na internetu dozvěděla něco o rezistorech.
(Andrea)
Odpověď: Milá Andreo,
rezistory jsou elektrické součástky, dělíme je na pevné a proměnné. Ty pevné
mají pevně stanovený odpor, který nejde měnit. Mohou být buď vrstvové nebo drátové.
Jejich společným základem je destička nebo váleček (viz. obrázek ).Proměnné
rezistory mají, jak už název napovídá, proměnnou hodnotu odporu, jsou to například
potenciometry. Na rozdíl od rezistorů mají tři vývody. Třetí vývod se jmenuje běžec, pohybuje
se po celé odporové dráze a plynule tak reguluje hodnotu odporu mezi ním a jedním
z konců této dráhy. Další podrobnosti o rezistorech najdete například na stránkách:
http://lucy.troja.mff.cuni.cz/~tichy/kap1/11.html ,
http://www.sweb.cz/radek.jandora/f14.htm ,
http://www.iabc.cz/Clanek4764.htm .
Dotaz: Zajímalo by mě, jak je to z výkonem elektrických spotřebičů. V běžné zásuvce
je maximálně 230 V a 0,5 A. Podle vzorce pro výkon P = U.I by byl nejvyšší
možný výkon jen 165 W....ale to je přece blbost. Jak je tedy dosaženo většího
výkonu? Je ve spotřebiči nějaké zařízení, které proud zvětší?
(Martas)
Odpověď: Příteli,
nevím, kde jste se dočetl, že v zásuvce je 0,5 A. To je samozřejmě
nesmysl. Maximální proud, který lze odebírat ze zásuvky, je limitován
jističem. Pro zásuvky v běžném bytě to obvykle jsou jističe na 10 A,
ale mohou být až na 16 - 20 A. To určuje, jaké spotřebiče a s jakým
příkonem k té zásuvce nebo skupině zásuvek na společném jističi mohu
připojit. Příkon a podlimitní proud tedy určuje jen to, co do zásuvky
připojíte. Samozřejmě není možné mít jistič na libovolně velký proud,
je to opět limitováno, toto průřezem a kovem vodičů.
Dotaz: Hlavou mi vrtá následující myšlenkový pokus:
Mám elektricky nabitou částici, která se řítí prostorem - jde o rovnoměrný
přímočarý pohyb - a která tedy kolem sebe generuje magnetické pole.
Mám druhou částici, která si to šine kousek od té první, jakoby ruku v ruce,
stejným směrem a rychlostí. Protože je taky nabitá, nachází se v magnetickém
poli té první částice a pohybyje se - je to jasné, bude na ni působit
magnetická síla (samozřejmě na tu první taky, jenom opačná). Ale ouha:
Volím souřadný systém na jedné z částic - jde o rovnoměrný přímočarý pohyb,
takže mohu - a najednou tu sice jsou dvě nabité částice, ale pohyb nikde,
takže ani magnetizmus nikde. Spor! Někde jsem udělal chybu, o tom není pochyb,
ale kde? (Jakub Herout)
Odpověď: Milý kolego,
to je dobře, že Vám tyhle otázky vrtají hlavou. A určitě vrtaly i
generacím před Vámi, protože otázka, jak se změní popis fyzikálního
systému, když si přesednu z jedné soustavy do druhé, je velmi přirozená a
velmi stará. Ve Vašem speciálním případě nahlíženo ze soustavy, ve které
se částice pohybují, vidíte proudy a magnetické síly (ale taky byste měl
uvážit elektrostatické síly, když máte náboje), ze soustavy, ve které jsou
částice klidné, vidíte jen elektrostatickou sílu. Mohl byste taky do
svých myšlenkových pokusů přidat další náboje, abyste například dostal
neutrální drát s proudem. Vhodným nástrojem pro popis těchto jevů je
tenzor elektromagnetického pole, který v sobě zahrnuje intenzity
magnetického i elektrického pole a definovaným způsobem se transformuje
při přechodu mezi soustavami (při relativistických transformacích). Chce
si to konkrétně vyzkoušet, podrobněji je to napsáno v téměř jakékoli knize
o teorii elmag. pole, jedna z nich je i na webu:
http://www.plasma.uu.se/CED/Book/.