Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 170 dotazů obsahujících »elektric«
108) Rezistory
20. 03. 2003
Dotaz: Chtěla bych se zeptat, kde bych se na internetu dozvěděla něco o rezistorech.
(Andrea)
Odpověď: Milá Andreo,
rezistory jsou elektrické součástky, dělíme je na pevné a proměnné. Ty pevné
mají pevně stanovený odpor, který nejde měnit. Mohou být buď vrstvové nebo drátové.
Jejich společným základem je destička nebo váleček (viz. obrázek ).Proměnné
rezistory mají, jak už název napovídá, proměnnou hodnotu odporu, jsou to například
potenciometry. Na rozdíl od rezistorů mají tři vývody. Třetí vývod se jmenuje běžec, pohybuje
se po celé odporové dráze a plynule tak reguluje hodnotu odporu mezi ním a jedním
z konců této dráhy. Další podrobnosti o rezistorech najdete například na stránkách:
http://lucy.troja.mff.cuni.cz/~tichy/kap1/11.html ,
http://www.sweb.cz/radek.jandora/f14.htm ,
http://www.iabc.cz/Clanek4764.htm .
Dotaz: Zajímalo by mě, jak je to z výkonem elektrických spotřebičů. V běžné zásuvce
je maximálně 230 V a 0,5 A. Podle vzorce pro výkon P = U.I by byl nejvyšší
možný výkon jen 165 W....ale to je přece blbost. Jak je tedy dosaženo většího
výkonu? Je ve spotřebiči nějaké zařízení, které proud zvětší?
(Martas)
Odpověď: Příteli,
nevím, kde jste se dočetl, že v zásuvce je 0,5 A. To je samozřejmě
nesmysl. Maximální proud, který lze odebírat ze zásuvky, je limitován
jističem. Pro zásuvky v běžném bytě to obvykle jsou jističe na 10 A,
ale mohou být až na 16 - 20 A. To určuje, jaké spotřebiče a s jakým
příkonem k té zásuvce nebo skupině zásuvek na společném jističi mohu
připojit. Příkon a podlimitní proud tedy určuje jen to, co do zásuvky
připojíte. Samozřejmě není možné mít jistič na libovolně velký proud,
je to opět limitováno, toto průřezem a kovem vodičů.
Dotaz: Hlavou mi vrtá následující myšlenkový pokus:
Mám elektricky nabitou částici, která se řítí prostorem - jde o rovnoměrný
přímočarý pohyb - a která tedy kolem sebe generuje magnetické pole.
Mám druhou částici, která si to šine kousek od té první, jakoby ruku v ruce,
stejným směrem a rychlostí. Protože je taky nabitá, nachází se v magnetickém
poli té první částice a pohybyje se - je to jasné, bude na ni působit
magnetická síla (samozřejmě na tu první taky, jenom opačná). Ale ouha:
Volím souřadný systém na jedné z částic - jde o rovnoměrný přímočarý pohyb,
takže mohu - a najednou tu sice jsou dvě nabité částice, ale pohyb nikde,
takže ani magnetizmus nikde. Spor! Někde jsem udělal chybu, o tom není pochyb,
ale kde? (Jakub Herout)
Odpověď: Milý kolego,
to je dobře, že Vám tyhle otázky vrtají hlavou. A určitě vrtaly i
generacím před Vámi, protože otázka, jak se změní popis fyzikálního
systému, když si přesednu z jedné soustavy do druhé, je velmi přirozená a
velmi stará. Ve Vašem speciálním případě nahlíženo ze soustavy, ve které
se částice pohybují, vidíte proudy a magnetické síly (ale taky byste měl
uvážit elektrostatické síly, když máte náboje), ze soustavy, ve které jsou
částice klidné, vidíte jen elektrostatickou sílu. Mohl byste taky do
svých myšlenkových pokusů přidat další náboje, abyste například dostal
neutrální drát s proudem. Vhodným nástrojem pro popis těchto jevů je
tenzor elektromagnetického pole, který v sobě zahrnuje intenzity
magnetického i elektrického pole a definovaným způsobem se transformuje
při přechodu mezi soustavami (při relativistických transformacích). Chce
si to konkrétně vyzkoušet, podrobněji je to napsáno v téměř jakékoli knize
o teorii elmag. pole, jedna z nich je i na webu:
http://www.plasma.uu.se/CED/Book/.
Dotaz: Zajímalo by mě, jesli byl již vynalezen nějaký nový motor, který by mohl
sloužit k pohonu kosmických lodí. (pro pohyb v atmosféře a nebo ve vakuu)
Zatím znám jen raketový a iontový motor. (Pažout)
Odpověď: Jiného se těžko něco najde, jediný rozumně možný princip je raketový - tj.
něco házíte dozadu za sebe (tj. něčemu hmotnému udílíte zrychení dozadu), a
aby se zachovala hybnost celého vašeho systému, tak vaše loď se urychluje
dopředu.
Takto funguje raketa: hořením paliva vznikají plyny, ty jsou od
rakety vrhány zpět, takže raketu to tlačí kupředu. (Tedy ne že by se
"odstrkovala od vzduchu", jak si tu a tam někdo myslí.) Iontový motor je na
úplně stejném principu, jenom namísto neutrálních plynů vypuzovaných velkou
rychlostí danou chemickou reakcí jsou tam elektricky nabité ionty
urychlované elektrickým polem. (Konstrukčně je to samozřejmě trošku
složitější.)
Pokud se ale pohybujete po nějakých kolejích nebo v nějakém
elektricky vodivém prostředí, tak jsou i jiné metody než kolečka. Už jste
slyšel o housenkovém pohonu (magnetohydrodynamickém pohonu)? Jestli ne, tak
si nalistujte str. 766 v učebnici FYZIKA, Halliday, Resnick, Walker. (vydalo
VUTIUM a Prometheus, 2001).
Dotaz: Co je to anomálie vody vím, ale nikde jsem nezjistila, které vlastnosti
částic vody nebo které vnitřní síly ji způsobují. (Milada Otradovcová)
Odpověď: Nejde o nějaké nové síly, ale o to, že voda, tedy H2O, má zvláště
příznivou strukturu pro tzv. vodíkové můstky.
Atom vodíku je sice pro chemickou vazbu jednomocný, ale - tak
trochu jako záletník - dokáže vedle toho navázat i vazbu další, zvanou
vodíkový můstek. Taková vazba je o hodně slabší než chemická, ale zase
mnohem silnější než obecná vzájemná přitažlivost molekul (van der
Waalsovy síly, daná tím, že i neutrální molekuly mají víceméně pevná a
těžká kladná jádra a kolem nich záporné obláčky, které se vzájemným
odpuzováním mohou přesunout nesymetricky, tím vytvořit z molekul
elektrické dipóly, a ty už na sebe silově působí). Fluor, prvek sousední
ke kyslíku, to vodíku také "toleruje", ale tam se to projeví tím, že
vedle jednoduchého fluorovodíku HF je velmi stabilní i dimer (HF)2.
Molekuly vody se naproti tomu vodíkovými můstky dynamicky spřádají do
jakýchsi "sítí", a proto je za normálních teplot voda kapalná, proto je
tolik různých struktur ledu apod.
Díky těmto "vnitřním propojením navíc", ne tak pevným, ale přesto
výrazným, má voda anomálií mnoho: "obrácená roztažnost" mezi 0°C a 4°C,
hustota ledu nižší než hustota kapaliny, klesání teploty tání ledu se
zvyšujícím se tlakem, výrazně větší měrné teplo i skupenská tepla tání i
varu než jiných kapalin apod. A především by měla být - podle své
molekulové hmotnosti 18 - za obvyklých podmínek plynem, stejně jako
fluorovodík, dvakrát těžší sulfan apod., a jak už bylo řečeno.