Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 170 dotazů obsahujících »elektric«
13) Napětí v elektroplaxách rejnoků
22. 04. 2008
Dotaz: Dobrý den, chtěla bych se zeptat, jaké chemické reakce vznikají v
elektroplaxách rejnoků a úhořů, díky kterým u nich vzniká elektrický
proud.Děkuji. (Tereza Šťastná)
Odpověď: Nejsem na tuto problematiku odborník, takže má odpověď nebude možná přesná, ale z řady vědeckých článků k tomuto tématu pro mě vyplynulo, že proud nevzniká chemickou reakcí, ale na fyzikálním principu - cytoplazmatické membrány elektroplaxy jsou v klidovém stavu nabity z vnější strany kladně, z vnitřní záporně. To je umožněno omezením přenosu iontů přes membránu, tj. kationty a anionty nemohou volně procházet (pouze přes speciální kanály), jsou "násilím" drženy na jednotlivých stranách membrány a nemůže tedy dojít k vyrovnání jejich koncentrací a "vybití" elektrického potenciálu na membráně. Horní a dolní membrána elektroplaxy jsou v klidovém stavu nabity "proti sobě" (tj.: +/- -/+), na elektroplaxe není ve výsledku žádné napětí a proud neteče.
Spodní membrána je inervována a příslušný nervový signál otevře iontové kanály v membráně tak, aby došlo k výměně nábojů na této spodní membráně (například se otevřou kanály pro průchod kationtů dovnitř buňky, čímž se kladný náboj přesune z vnější strany na vnitřní stranu membrány) - nyní je spodní membrána nabita zvnějšku záporně, uvnitř kladně. Uspořádání potenciálů na horní a spodní membráně elektroplaxy je nyní +/- +/-, čímž se vytvoří na jedné elektroplaxe napětí ve výši zhruba 50 milivoltů a dochází k elektrickému výboji. Při současné aktivaci všech elektroplax, kterých mohou být stovky, je vzniklý výboj dostatečný k omráčení kořisti nebo zastrašení útočníka.
Dotaz: Dobrý den, mám problém s příkladem z kvantové fyziky. Vím, že to není
náplní Vašeho webu, ale prosím Vás moc o pomoc, co s tím?: Prahová
vlnová délka pro fotoelektrickou emisi u wolframu je 230nm. Jaká musí být
vlnová délka použitého světla, aby vyletovaly elektrony s maximální
energií 1,5 eV? (Market)
Odpověď: Při fotoelektrickém jevu (též fotoefektu) dopadají fotony na povrch materálu a předávají svou energii elektronům. Část této energie je třeba k samotnému vytržení elektronu z povrchu materiálu (tzv. výstupní práce), zbytek se pak může využít k urychlení elektronu, tj. pro kinetickou enerhii elektronu.
Je-li výstupní práce elektronu u wolframu ekvivalentní energii fotonu o vlnové délce 230 nm (tedy asi 5,4 eV), pak tedy stačí zjistit, jaká vlnová délka odpovída světlu o energii fotonů E = 6,9 (=5,4+1,5) eV. Vyjde nám pak světlo o vlnové délce zhruba 180 nm.
Více se o fotoelektrickém jevu můžete dočist například na:
Dotaz: Proč nepůsobí magnetické pole na stojící elektrický náboj? Magnetické
působeni mezi vodičem a nábojem se vysvětluje pomocí relativistické
kontrakce délky. Stojící (vůči vodiči) elektron ze své soustavy vidí,
že ve vodiči protony stojí na místě a elektrony se posouvají. Vzdálenosti
mezi elektrony ve vodiči jsou kontrahovány, takže elektronů je tam víc a
tím by měl vzniknout nadbytek záporného náboje ve vodiči a elektron by se
měl odpuzovat od vodiče. Jenže podle učebnic se pro elektron v klidu neděje
nic. (Milan Soukenik)
Odpověď: Vzdálenosti mezi elektrony nejsou tuhé - nelze si představovat, že v S´
zůstávají stejné. (S´ je soustava spojená s lektrony, které se v rovném
vodiči pohybují.)
Naopak, vzdálenosti elektronů budou stejné v S ("laboratorní" soustava, v
níž je vodič v klidu), jinak by vodič nebyl elektricky neutrální. A když je
vodičem uzavřený kus drátu (kde se elektrony pohybují například díky tomu,
že je ve vodiči baterie), tak když zapnu baterii, počet elektronů v drátu
zůstane stejný (nemají odkud tam přibýt). Takže kdybychom si je představili
seřazené "v řetízku" za sebou, tak se jejich vzdálenosti měřené v S za
pohybu nezmění.
Takže magnetické pole na stojící elektrický náboj opravdu nepůsobí.
Dotaz: Dobrý deň, chcem Vás poprosiť o vysvetlenie či peltierov a seebeckov
jav prebieha aj pri vežmi nizkych teplotách (tekuté helium). Ako by sa
správal termočlánok vytvoreny z kovov olova a zinku ktoré sú pri tejto
teplote supravodivé. Bude dochádzať k prenosu tepla pri pretekaní
elektrického prúdu takýmto článkom. (Ján Sojka)
Odpověď: Velikost Peltierova i Seebeckova jevu velmi silně klesá s klesající teplotou. Existuje několik kombinací kovů nebo slitin, které dávají ve spojení ještě rozumně měřitelné elektromotorické napětí termočlánku pod 100 K. Je to například Au s 0,03 % Fe proti Cu nebo chromelu, Au s 2,1 % Co proti mědi, s nimiž lze měřit až k héliové teplotě. Málo se používají, poněvadž jejich citlivost je velmi malá a je třeba také zabránit přítoku tepla po drátech (které nemohou být velmi tenké) z vyšší teploty na měřený objekt v nízké teplotě.
Seebeckův jev přestává být reálné použitelný k chlazení pod 100 K. Takovouto
teplotu lze dosáhnout kaskádou chladicích článků, jimiž protéká poměrně silný proud. Je třeba efektivně odvést teplo z teplého konce článku i Joulovo teplo. Tyto články se vytvářejí ze směsných polovodičů, v nichž je tento efekt nejsilnější.
Supravodiče by zřejmě nic měřitelného nezpůsobilý, Zn je navíc supravodivý
až pod 0,875 K.
Dotaz: Dobrý deň, chcel by som Vás poprosiť o vysvetlenie problematiky
seebckovho javu. Ide mi konkretne o nasledovné. Ak vytvoríme uzavretý obvod z
dvoch rôznych kovov a spoje udržiavame na rôznych teplotách začne
obvodom pretekať elektrický prúd. Otázka znie čo sa deje z teplom
ktore dodávame teplejšiemu spoju. Jasné je že sa šíri
tepelnov vodivosť;ou k chladnejšiemu spoju, ale premieňa sa aj na
elektrickú energiu preteká juceho prúdu obvodom (ten sa samozrejme mení na
joulove teplo v celom objeme kovov). Otázka znie dochádza aj k prenosu tepla z
teplejšieho spoja na chladnejší vplyvom peltierovho javu? Dali by
sa tieto pochody nejako vypočítať a tym úrčiť účinnosť termoelektrickeho generátora? Od čoho vlastne zavisí účinnosť takého termoelektrického generátora? (Ján Sojka)
Odpověď: V Peltierově generátoru se uplatňuje jak chladicí výkon zprostředkovaný nosiči náboje v soustavě dvou spojených materiálu (většinou polovodičů), tak i parazitní přenos tepla těmito materiály od teplého k chladnému konci, rovněž i Joulovo teplo vznikající průchodem proudu materiály. Je tedy nutná optimalizace parametrů generátoru, aby výsledný efekt byl co nejlepší. Teplo vybavované na teplém konci se odvádí chlazením (napr. vodou, nejčastěji však vzduchem), radiací a vedením tepla.
K charakterizaci Peltierova generátoru se zavádí parametr kvality Z = a·a/(r·k) [1/K] případně Z·T (bezrozměrný), který v nejlepším případě dosáhne hodnoty 1. Omlouvám se za zápis vztahů, nemohu použít indexy ani řeckou abecedu. Parametr a označuje Seebeckův koeficient (U = a·dT), r je měrný elektrický odpor materiálu, k je měrná tepelná vodivost materiálu - rozumí se vždy střední hodnota ramen článku.
Chladicí výkon Peltierova článku je dQ/dt = P·I, kde P označuje Peltierův koeficient svázány se Seebeckovym koeficientem a vztahem P = a·T.
Nejvyšších parametrů kvality Z = 0,015-0,04 se dosahuje v polovodičových tuhých roztocích Bi - Té, Sb - Té, Bi - Se nebo Bi -Sb, případně jiných. Novější údaje neznám.