FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 170 dotazů obsahujících »elektric«

14) Fotoelektrický jev16. 04. 2008

Dotaz: Dobrý den, mám problém s příkladem z kvantové fyziky. Vím, že to není náplní Vašeho webu, ale prosím Vás moc o pomoc, co s tím?: Prahová vlnová délka pro fotoelektrickou emisi u wolframu je 230nm. Jaká musí být vlnová délka použitého světla, aby vyletovaly elektrony s maximální energií 1,5 eV? (Market)

Odpověď: Při fotoelektrickém jevu (též fotoefektu) dopadají fotony na povrch materálu a předávají svou energii elektronům. Část této energie je třeba k samotnému vytržení elektronu z povrchu materiálu (tzv. výstupní práce), zbytek se pak může využít k urychlení elektronu, tj. pro kinetickou enerhii elektronu.

Je-li výstupní práce elektronu u wolframu ekvivalentní energii fotonu o vlnové délce 230 nm (tedy asi 5,4 eV), pak tedy stačí zjistit, jaká vlnová délka odpovída světlu o energii fotonů E = 6,9 (=5,4+1,5) eV. Vyjde nám pak světlo o vlnové délce zhruba 180 nm.

Více se o fotoelektrickém jevu můžete dočist například na:
(Jakub Jermář)   >>>  

15) Magnetické pole nepůsobí na stojící náboj15. 04. 2008

Dotaz: Proč nepůsobí magnetické pole na stojící elektrický náboj? Magnetické působeni mezi vodičem a nábojem se vysvětluje pomocí relativistické kontrakce délky. Stojící (vůči vodiči) elektron ze své soustavy vidí, že ve vodiči protony stojí na místě a elektrony se posouvají. Vzdálenosti mezi elektrony ve vodiči jsou kontrahovány, takže elektronů je tam víc a tím by měl vzniknout nadbytek záporného náboje ve vodiči a elektron by se měl odpuzovat od vodiče. Jenže podle učebnic se pro elektron v klidu neděje nic. (Milan Soukenik)

Odpověď: Vzdálenosti mezi elektrony nejsou tuhé - nelze si představovat, že v S´ zůstávají stejné. (S´ je soustava spojená s lektrony, které se v rovném vodiči pohybují.)

Naopak, vzdálenosti elektronů budou stejné v S ("laboratorní" soustava, v níž je vodič v klidu), jinak by vodič nebyl elektricky neutrální. A když je vodičem uzavřený kus drátu (kde se elektrony pohybují například díky tomu, že je ve vodiči baterie), tak když zapnu baterii, počet elektronů v drátu zůstane stejný (nemají odkud tam přibýt). Takže kdybychom si je představili seřazené "v řetízku" za sebou, tak se jejich vzdálenosti měřené v S za pohybu nezmění.

Takže magnetické pole na stojící elektrický náboj opravdu nepůsobí.

(Leoš Dvořák)   >>>  

16) Seebeckův a Peltierův jev07. 04. 2008

Dotaz: Dobrý deň, chcem Vás poprosiť o vysvetlenie či peltierov a seebeckov jav prebieha aj pri vežmi nizkych teplotách (tekuté helium). Ako by sa správal termočlánok vytvoreny z kovov olova a zinku ktoré sú pri tejto teplote supravodivé. Bude dochádzať k prenosu tepla pri pretekaní elektrického prúdu takýmto článkom. (Ján Sojka)

Odpověď: Velikost Peltierova i Seebeckova jevu velmi silně klesá s klesající teplotou. Existuje několik kombinací kovů nebo slitin, které dávají ve spojení ještě rozumně měřitelné elektromotorické napětí termočlánku pod 100 K. Je to například Au s 0,03 % Fe proti Cu nebo chromelu, Au s 2,1 % Co proti mědi, s nimiž lze měřit až k héliové teplotě. Málo se používají, poněvadž jejich citlivost je velmi malá a je třeba také zabránit přítoku tepla po drátech (které nemohou být velmi tenké) z vyšší teploty na měřený objekt v nízké teplotě.

Seebeckův jev přestává být reálné použitelný k chlazení pod 100 K. Takovouto teplotu lze dosáhnout kaskádou chladicích článků, jimiž protéká poměrně silný proud. Je třeba efektivně odvést teplo z teplého konce článku i Joulovo teplo. Tyto články se vytvářejí ze směsných polovodičů, v nichž je tento efekt nejsilnější.

Supravodiče by zřejmě nic měřitelného nezpůsobilý, Zn je navíc supravodivý až pod 0,875 K.

(Miloš Rotter)   >>>  

17) Peltierův generátor07. 04. 2008

Dotaz: Dobrý deň, chcel by som Vás poprosiť o vysvetlenie problematiky seebckovho javu. Ide mi konkretne o nasledovné. Ak vytvoríme uzavretý obvod z dvoch rôznych kovov a spoje udržiavame na rôznych teplotách začne obvodom pretekať elektrický prúd. Otázka znie čo sa deje z teplom ktore dodávame teplejšiemu spoju. Jasné je že sa šíri tepelnov vodivosť;ou k chladnejšiemu spoju, ale premieňa sa aj na elektrickú energiu preteká juceho prúdu obvodom (ten sa samozrejme mení na joulove teplo v celom objeme kovov). Otázka znie dochádza aj k prenosu tepla z teplejšieho spoja na chladnejší vplyvom peltierovho javu? Dali by sa tieto pochody nejako vypočítať a tym úrčiť účinnosť termoelektrickeho generátora? Od čoho vlastne zavisí účinnosť takého termoelektrického generátora? (Ján Sojka)

Odpověď: V Peltierově generátoru se uplatňuje jak chladicí výkon zprostředkovaný nosiči náboje v soustavě dvou spojených materiálu (většinou polovodičů), tak i parazitní přenos tepla těmito materiály od teplého k chladnému konci, rovněž i Joulovo teplo vznikající průchodem proudu materiály. Je tedy nutná optimalizace parametrů generátoru, aby výsledný efekt byl co nejlepší. Teplo vybavované na teplém konci se odvádí chlazením (napr. vodou, nejčastěji však vzduchem), radiací a vedením tepla.

K charakterizaci Peltierova generátoru se zavádí parametr kvality Z = a·a/(r·k) [1/K] případně Z·T (bezrozměrný), který v nejlepším případě dosáhne hodnoty 1. Omlouvám se za zápis vztahů, nemohu použít indexy ani řeckou abecedu. Parametr a označuje Seebeckův koeficient (U = a·dT), r je měrný elektrický odpor materiálu, k je měrná tepelná vodivost materiálu - rozumí se vždy střední hodnota ramen článku.

Chladicí výkon Peltierova článku je dQ/dt = P·I, kde P označuje Peltierův koeficient svázány se Seebeckovym koeficientem a vztahem P = a·T.

Nejvyšších parametrů kvality Z = 0,015-0,04 se dosahuje v polovodičových tuhých roztocích Bi - Té, Sb - Té, Bi - Se nebo Bi -Sb, případně jiných. Novější údaje neznám.

(Miloš Rotter)   >>>  

18) Peizoelektrický jev14. 03. 2008

Dotaz: Dobrý den. Zajímalo by mne, jestli je k vygenerování napětí na krystalické mřížce piezo materiálu nutný impuls, tj. pulsní (střídavě tlak a "release" - např. krystal v podrážce při chůzi) vyvinutí práce/síly, nebo, zda-li je možné vyvíjet na piezo krystal permanentní tlak a získávat tak permanentní el.napětí. Jde tedy zřejmě o to, jestli je napětí generováno při každé změně struktury krystalové mřížky a nebo stačí, aby byla permanentně "vychýlena ze svého klidového stavu". Děkuji. Max (Max)

Odpověď: Z první vody: deformací piezoelektrického krystalu (majícího velmi nízkou symetrii) se přemístí náboje uvnitř buňky tak, že se na buňce objeví elektrický dipólový moment. Jde tedy o "klidnou" deformaci krystalu, není třeba pulz apod. Na tomto principu pracují piezoelektrické snímače deformace.

(Jan Obdržálek)   >>>