Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 170 dotazů obsahujících »elektric«
147) Tepelná vodivost látky
22. 07. 2002
Dotaz: Zajímalo by mne, zda se dá obecně říci, že tepelná vodivost látky je přímo
úměrná elektrické vodivosti. Jak je to např.s tepelnou vodivostí u ionizovaného vzduchu? Má lepší tepelnou vodivost než vzduch neionizovaný ? (Lukáš Loukota)
Odpověď: Je to pravda do té míry, do jaké je vodivost tepelná i
elektrická způsobována tímtéž médiem, tedy (volně
pohyblivými) elektrony. Tam, kde se uplatňují jiné mechanismy
vedení tepla či elektřiny, je nutno porovnávat právě tyto
mechanismy.
Odpověď:
Milý Lukáši, omlouvám se za zpoždění s odpovědí.
Z Vašeho dotazu totiž přesně nevyplývá, co Vás
přímo o kulovém blesku zajímá. A tak začnu od
začátku.
Kulový blesk je svítící útvar, který má kulovitý,
výjimečně i hruškovitý tvar a roztřepené okraje.
Velikostně se pohybuje od tenisového míčku po míč
na košíkovou. Některé zdroje uvádějí maximální
velikost až několik metrů. Kulové blesky mají
rozmanité barvy - od sinavě bílé až k sytě
červené, někdy jsou i modré. Jev trvá od několika
sekund až po několik minut. Mohou se pohybovat ve
svislém i vodorovném směru, případně setrvat zcela
nehybně na místě. Pohybují se většinou klidně a
vykazují stabilitu.Velká část z nich se otáčí
kolem vlastní osy. Objevují se náhle, a to jak venku,
tak i uvnitř místností
Dosud nebyla přijata
žádná oficiální teorie o vzniku kulového blesku, ale byly
vysloveny některé hypotézy jako např. že jde o elektrický
výboj, přírodní termonukleární reakci, formu
atmosferického plazmatu atd.
Spoustu dalších zajímavých informací i s obrázky blesků
můžete najít na webu na adrese http://www.darius.cz/ag_nikola/blesk_foto.html, http://mujweb.atlas.cz/www/astrofoto/meteorologii.htm (obrázek je z této stránky)
Dotaz: Co to je kapilární elevace, Franck-Herzův pokus, Millicanův pokus a akcelerace.
(Vladka Haragova)
Odpověď: 1.
Kapilární elevace - Kapilarita je jev, který vzniká
v kapilárách (tenkých trubičkách) jako důsledek zakřivení
povrchu kapalin a vzniku kapilárního tlaku. U kapalin, které
smáčejí stěny kapiláry vzniká s dutým povrchem výslednice
směrem ven z kapaliny. To má za následek, že v kapiláře
vystoupí kapalina do takové výšky h, až
hydrostatický tlak sloupce h vyrovná kapilární tlak
- jde o kapilární elevaci. Pro vypuklý povrch a
nesmáčející kapalinu směřuje výslednice dovnitř kapaliny,
takže sloupec se sníží o h - kapilární deprese.
Podívejte se na obrázek.
2.Millikan
v roce 1909 přímou metodou změřil velikost elementárního
náboje (e = 1,602 . 10-19 C). Určil ji porovnáním
sil, kterými působí elektrostatické a gravitační pole na
malá nabitá tělíska. Mezi desky kondenzátoru byly
vstřikovány olejové kapičky a mikroskopem sledován jejich
vertikální pohyb v přítomnosti elektrického pole a bez
něho. Uspořádání pokusu můžete vidět na obrázku. 3.Franck-Hertzův pokus (1914)
- myšlenka jejich pokusu spočívá v tom, že atomy
zředěného plynu se ostřelují elektrony s rychlostmi 105
m.s-1. Při tom dochází k pružným nebo nepružným
srážkám s atomy plynu. Z jejich pokusu vyplynulo, že při
rychlostech elektronů menších než kritická rychlost
dochází k pružným srážkám s atomy plynu. Elektron
neodevzdá atomu svoji energii, ale odrazí se od něho (změní
se jen směr jeho rychlosti). Pokud elektrony dosáhnou jisté
kritické rychlosti (různé pro různé látky), nastane
srážka nepružná. Elektron odevzdá svoji energii atomu,
který přitom přejde do jiného stacionárního stavu s
vyšší energií. Atom tedy buď vůbec nepřijímá energii
(pružná srážka), nebo ji přijímá jen v kvantech rovných
rozdílu energií dvou stacionárních stavů.Ve svém pokusu
ukázali, že pokud energie elektronů nedosáhne jistou
kritickou hodnotu, nastávají jen pružné srážky elektronů s
atomy plynu. Uspořádání jejich pokus můžete vidět na obrázku. 4. Akcelerace = zrychlení.
Mění-li se vektor rychlosti, říkáme, že se těleso pohybuje
se zrychlením. Zrychlení jako fyzikální veličinu značíme a,
jeho jednotkou je m.s-2.
Dotaz: Zajímalo by mě, zda existuje nějaký druh energie, vlnění.....atd. , který se dá snadno získat z el. energie a poté znovu transformovat zpět na el. energii? Pokud ano, jak? (Ing.Lukáš Fiala)
Odpověď: Bojím, že nic takového ideálního známo není - neznáme asi
nic jiného než elektrickou energii konvertovat na potenciální
(přečerpávací vodní elektrárna) a pak zase se ztrátami (to
vždycky, takže už to nebudu připomínat) v turbíně zpátky
elektřinu vyrobit, na chemickou (různé akumulátory,
zvláště v poslední době intenzívně zdokonalované, nebo
např. rozložením na vodík a kyslík, které se zase v
palivovém článku spojí a generují elektřinu), na kinetickou
(roztočený setrvačník) a moc jiných způsobů mne nenapadá.
Při posuzování jednotlivých způsobů je zajímavé starat se
o otázky, na jak dlouho se dá elektrická energie uschovat, s
jakými ztrátami získat zpátky, s jakou hustotou se dá
uložit (tužkový akumulátor s kapacitou alespoň ampérdny),
jak drahá a bezpečná technologie je potřeba.
Dotaz: Včera byl na kanálu Spectrum odvysílán dokument o tzv. Studené fúzi. Pojednával o pokusu fyziků Pondse a Fleischmanna (snad jsem pochytil ta jména O.K.) z roku 1989, kdy se při reakci uvolnilo zajímavé množství "zbytkového" tepla.
Při ověřování však nebylo dosaženo pokaždé stejného výsledku a na popud prezidenta Busche (staršího) byla ustavena vyšetřovací komise, která pokus vyvrátila.
V průběhu 90. Let pak docházelo ke střetnutí mezi přívrženci a odpůrci této metody, přičemž vždy měli navrch odpůrci. Dokument však naznačuje, že odpůrci nikdy nejednali zcela nezaujatě.
Můžete to prosím nějak nezávisle komentovat?
(Jan Rechnovský)
Odpověď: Nevylučuji v principu, že by šla najít nějaká ta
"studená fúze", tj. že by šlo nějakým trikem
nechat k sobě přiblížit např. dvě jádra vodíku, tedy
protony, aby z nich vzniklo jádro deuteria (p+n+e+neutrino).
Toto splynutí se nazývá fúze. Je ale nutno dodat oběma
jádrům velikou energii (420 keV, tedy urychlit je napětím 420
000 V a strefit se čelně), protože se na dálku odpuzují
(tak, jak bychom taky čekali od elektricky stejně nabitých
částic). Pravda je, že po překonání této energiové
bariéry se nám všechna dodaná práce nejenom vrátí, ale
ještě kus přibyde - ale kde si půjčit na ten začátek?
Klasická "horká fúze" spočívá prostě v tom, že
vodík dostatečně zahřejeme. Spočítáte-li si ale teplotu,
která odpovídá oné energiové bariéře, dostanete nesmírně
vysokou teplotu, překračující podstatně teplotu ve Slunci
(asi 15 milionů stupňů, což je jen 1,3 keV). Jeden trik je
ale v tom, že má-li látka nějakou teplotu, pak
odpovídající střední kinetická energie je opravdu jen
STŘEDNÍ, tedy některé částečky (molekuly, atomy, ionty,
podle toho, o co jde) budou v daném okamžiku mít energii
menší, jiné větší. Nepatrná část může mít i energii
podstatně větší, takže jí to stačí na fúzi - a to je
případ Slunce, které taky spíše "doutná" než
"hoří".
Další trik je v tom, najít nějaký šikovný mezistupeň,
přes který by se dala bariéra přelézt třeba tím, že by se
menší dávky energie složily dohromady - asi jako přelezete
zeď, bude-li u ní žebřík. Nalezení takového žebříku by
bylo právě onou studenou fúzí. Objektivně vzato se to zatím
nepodařilo, i když takový jev není vyloučen. (Není také
tak docela snadné poznat, zda na pár atomech k tomu došlo a
zda by to v takovém případě mělo vůbec význam.) Ovšem to,
že někdo bude zarputile hájit tézi, které věří, i když
nebyla pokusem ověřena - to už je otázka spíše
psychologická, ne-li psychiatrická.