Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 170 dotazů obsahujících »elektric«
152) Posuvný proud
08. 07. 2002
Dotaz: Můj dotaz souvisí s Maxwellovými rovnicemi - není mi jasné co přesne si mám představit pod posuvným proudem, který Maxwell doplnil do rovnice formulující zákon celkového proudu (kromě toho že díky němu mají rovnice obecnou platnost-tedy platí ve všech polích). A proč je možné ho vyjádřit jako parciální derivaci vektoru elektrické indukce podle času?
Pak by mě ještě zajímalo, jestli byla rychlost světla určena poprvé řešením z maxwellových rovnic odvozené vlnové rovnice pomocí permeability a permitivity, nebo pomocí nějakého experimentu. (Petr Pokorný)
Odpověď: Milý
pane kolego, možná Vás trochu zklamu, ale takový je život.
Třeba ani není nic, co by bylo nutno si
"představit". Představa pomůže, ale je vždycky jen
jistým modelem, který něco podstatného znázorní, ale něco
jiného zakryje nebo naopak přidává něco, co v reálu není.
Budete-li svému mladšímu synovci vysvětlovat Vy, co je to
elektřina a elektrický proud, asi řeknete něco jako
"Elektrony jsou jako malí zelení mužíčci, co pobíhají
uvnitř drátů a orientují se tam, kam je zrovna tlačíme
vnějším napětím. A to napětí je, jako kdybychom tu trubici
zvedli tam, kde má být napětí větší. A ti mužíčci
nemůžou zmizet, (takže pro ně platí rovnice kontinuity),
navíc je v obvyklých podmínkách ani nemůžeme nějak
podstatněji stlačit k sobě, a proto elektrický okruh je
vždycky uzavřený, má-li opravdu téci proud I." Jenomže
to není tak docela pravda, protože když nabíjíte
kondenzátor, tak okruh není uzavřený - obě desky jsou přece
odděleny izolátorem! No ale doplníme-li člen Ip (posuvný
proud) ke členu I, tak se jím elektrický proud uzavře. To
samo o sobě by bylo dobrým důvodem k zavedení. Ale lze i
potvrdit, že takto zavedený proud Ip má i všechny další
vlastnosti "obyčejného" proudu, např. že vytváří
magnetické pole. Proto ho také zavádíme. Říkáme mu ale
raději "Maxwellův". To označení
"posuvný" je z představ, že existuje
všudypřítomný nevažitelný éter, jehož chvění se
projevuje jako světlo, jehož vnitřní napětí je dáno
elektrickým polem E a deformace (posunutí) se pak jeví jako
elektrická indukce D (angl. Displacement = posunutí). Na
posuvný proud se nenajde nějaký mechanický model. On totiž
existuje i ve vakuu, kde není (z hlediska klasické
elektrodynamiky) nic, co by se mohlo posouvat. Ale berme to jako
fakt, že doplněním tohoto výrazu se nám náš starý známý
proud "zacelí" - že to je právě to, co mu chybělo
k dokonalosti. A proč je možné ho vyjádřit jako parciální
derivaci vektoru elektrické indukce podle času? No to je
právě ten výraz, který by nám chyběl pro rovnici
kontinuity.
Rychlost světla byla nejprve změřena v dobách, kdy naoka o
světle nebyla vůbec spojována s elektřinou a magneticmem. Až
Weber vypočítal, že změny elektromagnetického pole by se
měly šířit rychlostí, která se nápadně podobala rychlosti
světla, a skvěle (tj. odvážně, ale pravdivě) z toho
vydedukoval, že světlo je elektromagnetické povahy. Přečtete
si o tom v učebnicích o historii fyziky.
Dotaz: 1) Kde lze najít (web nebo publikace) něco o změnách vlastností plynů a vodních par při ionizaci. Zajímá mne zejména změna elektrického odporu a elektrické pevnosti plynů při ionizaci. 2) Lze docílit ionizace pomocí laserového paprsku ?
(Jiří Büllow)
http://www.aldebaran.cz/ Bohužel na tomto serveru nejsou udělány
výboje v plynech, nicméně jsou tam hezké obrázky a hlavně
české povídání o plazmatu vůbec.
Co se týče změny
elektrické vodivosti a elektrické pevnosti při ionizaci, je
odpověď značně závislá na druhu plynu a stupni ionizace.
Obecně se dá říci, že ionizovaný plyn se stává elektricky
vodivý (je třeba uvážit, že v atmosféře kolem nás je v
každém kubickém cm asi 2000 iontů), a že za určitých
podmínek (aplikací dostatečně vysokého napětí mezi
elektrodami, mezi kterými se vodivost plynu měří) dojde k
lavinovému efektu, kdy již vytvořené elektrony a ionty na
své dráze dále ionizují, čímž stupeň ionizace, a tím i
vodivost prudce stoupá. Nemalou úlohu přitom hrají i tzv.
gama procesy, tj. sekundarni emise elektronů z povrchu
elektrody. Závislost tzv. zápalného napětí samostatného
výboje na součinu tlaku plynu a vzdálenosti rovinných
elektrod (p.d) udává tzv. Paschenův zákon, což je pro daný
plyn plynulá křivka s jedním minimem pro určité p.d.
Zápalné napětí lze snížit, pokud se poskytnou nějaké
nabité částice navíc (tj. kromě těch, které si elektrony
nebo ionty na své dráze nebo interakci s elektrodou samy
"vyrobí"), např. ionizací prostoru mezi elektrodami
zářením, aplikací dodatečného napětí na pomocnou
elektrodu s ostrým hrotem umístěnou mezi hlavními elektrodami
(tak se zapaluje fotografický blesk), termickou emisí
elektronů z ohřátého povrchu katody (tak se zapaluje výboj v
zářivce). Elektrická pevnost plynů je termín technický,
který je v podstatě ekvivalentní termínu zápalné napětí.
Moje představa o něm je ta, že se vztahuje k přesně
definovanému tvaru elektrod, mezi kterými se tato pevnost
měří, a udává se za daného, většinou atmosferického
tlaku (pokud tedy výboj vznikne, bude to jiskrový výboj).
2/ Co se týče druhé
otázky, ionizace pomocí laserového paprsku, tam odpověď
závisí na energii fotonů a na celkové hustotě energie ve
svazku. Vzhledem k tomu, že teď máme v ČR výkonný laserový
systém PALS, který se používá na generaci plazmatu
interakcí laserového paprsku s pevnou látkou, doporučuji
podívat se na jeho www stranku (v češtině) http://www.pals.cas.cz/pals/pac001hp.htm.(Prof.RNDr. Milan Tichý DrSc. - 21.6.2002)
Dotaz: Na jakém principu je chlazení elektrickým proudem a nebo je to nějaký blud? (Marek)
Odpověď: Asi máte na mysli Peltierův jev, který je právě obrácený
(doplňkový) k Seebockově jevu. Blud to tedy není, ale
samozřejmě - něco za něco. Mějme uzavřený elektrický
obvod tvořený materiály A a B. Zanedbejme ohmický odpor, tedy
to, že jak v mase toho A i toho B se vyvíjí Joulovo teplo. Pak
elektrický proud jdoucí v daném okamžiku jistým směrem
projde jednak rozhraní AB, jednak (jinde) BA. Jedno z těchto
rozhraní se pak trochu zahřívá, druhé se stejně tolik
ochlazuje. Platí tedy i zákon zachování energie, i 2. td.
zákon. V praxi jde o to, najít materiály (např. vhodný
polovodič typu p a typu n, nebo bismut a železo), kde je tento
jev dost velký a které přitom nemají moc špatnou vodivost -
aby Joulovo teplo nakonec nepřekrylo to ochlazení. Ale ono je
to vlastně úplně stejné, i když si vezmete z kuchyně
elektrickou ledničku. I do ní vháníte elektrický proud, ona
vám něco chladí (mrazák) - ale nutně něco jiného
zahřívá (výparník vzadu). Takže tohle "něco za
něco" máte i tady.(JO -19.6.2002)
Milý kolego, asi máte
doma ledničku na elektriku, takže chlazení elektrickým
proudem blud není. Spíše než standardní ledničku, kde
elektřina pohání motor kompresoru a chladí se tak, že se
pomocí stlačování a expanze chladícího média čerpá teplo
zevnitř ven, jste měl asi na mysli možnost
"přímého" chlazení. To je možné pomocí
Peltierova jevu, kdy proud tekoucí přes spoj dvou kovů tento
spoj v jednom směru ohřívá, v druhém chladí. Je to jev
obrácený k termoelektrickému jevu, kde zahřívání jednoho
spoje a chlazení druhého způsobuje proud v obvodu. Chladící
články založené na Peltierově jevu jsou komerčně dostupné
a pro některé aplikace se používají, např. se jimi dá
chladit procesor. Zkuste se podívat na www na jméno Peltier.(JD
-19.6.2002)
Dotaz: Jak by teoreticky vypadal fázový diagram obecné látky se zakreslaným 4. skupenstvím(plazma).
(Karel)
Odpověď: Jakkoliv
se říká, že plasma je čtvrté skupenství hmoty, nedá se to
brát až tak dogmaticky. Je samozřejmě rozdíl mezi tím,
jsou-li nejmenší částečky plynu navenek elektricky
neutrální a působí na sebe na dálku nanejvýš
dipól-dipólovou interakcí (o dva mocninné řády slabší
než náboje), anebo je-li tvořen zápornými elektrony a
kladnými ionty (neřkuli jen samotnými jádry, jako u vodíku).
Jenomže tomu chybí to, co je podstatné pro fázový přechod,
totiž náhlá, skoková změna fyzikálních veličin (např.
měrný objem) při nepatrné změně teploty. Takže to je
spíše něco jako rozmazaný fázový přechod. To ostatní si
jistě doplníte sám: v pV diagramu bude stabilní oblast
plasmatu ve vysokých teplotách (daleko od počátku), spíše
při nízkých tlacích. Ovšem zase to neextrapolujte moc
daleko. Při opravdu hodně vysokých teplotách (a tlacích) se
vám nastartují termonukleární reakce, když hustotu budete
zvyšovat dále, můžete dojít do stavu, kdy se začnou
uplatňovat obecně relativistické jevy a nakonec vám vše
zkolabuje do černé díry. Naopak půjdete-li s hustotou k nule,
je otázka, co dělat se "systémem", kde máte třeba
1 částici na kubický kilometr (nebo světelný rok ...)
Dotaz: Mohu se vás zeptat, jaká je účinnost klasického dynamického reproduktoru? (Poměr mezi vyzařovaným akustickým výkonem a dodávaným elektrickým příkonem)
Snažil jsem se to najít ve všemožných tabulkách, ale nikde jsem neuspěl.
(Pavel Koška)
Odpověď: Účinnost převodu z elektrického příkonu na akustický vyzářený výkon se v optimálním případě pohybuje okolo 1%, ale může být i daleko míň a jen zřídka je vyšší. Je to pochopitelně také závislé na frekvenci a předpokladu malého zkreslení (příkon se nedá hnát do krajnosti). Pokud má reproduktor uvedenu nějakou nominální hodnotu příkonu, pak tento příkon vydrží obvykle jen velmi krátkou dobu, pak se uvaří. Naštěstí hudba je plná pauz a tohle moc nehrozí. Výrobci totiž dost blafují a chtěji vypadat co nejlepší.