Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 170 dotazů obsahujících »elektric«
161) Ohmův zákon
16. 05. 2002
Dotaz: Co je to Ohmův zákon. Já totiž budu zkoušen 22.5. pouze z toho a jsem žák 9.tř
(Roman Kundrát)
Odpověď: Ohmův zákon vyjádřený rovnicí U = R I spolu spojuje
elektrické napětí U na součástce, elektrický odpor R této
součástky a elektrický proud I, který součástkou teče.
Jeho fyzikální smysl je v tom, že odpor R takto zavedený je
vlastností součástky a nezávisí na velikosti ani polaritě
přiloženého napětí.
Pro řadu SOUČÁSTEK Ohmův zákon neplatí (např. pro diodu).
Ale platí prakticky pro všechny MATERIÁLY (platí i pro
polovodiče), čili pokud je součástka "uvnitř"
stejnorodá (= homogenní), jako by třeba byla tyčka z
polovodiče (nebo hrudka polovodiče, jako je termistor), pak pro
ni Ohmův zákon platí, pokud se ovšem např. dodrží taky to,
že materiál má při měření stejnou teplotu. Tak např. pro
žárovku Ohmův zákon zdánlivě neplatí, protože při
malých proudech má mnohem menší odpor než při větších.
Ale taky není divu, protože větší proudy vlákno rozehřejí
tak, že má mnohem vyšší teplotu - a odpor závisí na
teplotě.
Podrobný rozbor a výklad Ohmova zákona s řešenými
příklady a barevnými obrázky viz např. Halliday,. Resnick,
Walker: FYZIKA. (Prometheus, 2001) kap. 27.8 Ohmův zákon, str.
702 - 705, 709, 712-14.
Dotaz: Prosím o objasnění pomů vlhkoměry nebo hygromery. Zajímalo by mě, jaké jsou druhy, jaké jsou nejvíce rozšířené a popřípadě, v jakém období byly vynalezeny a kým.
(Lucie Píšová)
Odpověď: Známý
a jednoduchý je vlasový hygrometr. Odmaštěný lidský vlas
přijímá vlhkost z okolního ovzduší a prodlužuje se; když
naopak je kolem sušší ovzduší, zkracuje se. Prodloužení se
měří např. tím, že je vlas na jednom konci pevně uchycen,
druhý je mírně natahován pružinkou a vlas se těsně
dotýká malého otáčivého kolečka s dlouhou ručičkou; tím
se nepatrné prodloužení dobře zviditelní. Stupnice se
cejchuje pokusně.
Přesnější je měřit teplotu vzduchu dvěma teploměry, jeden
z nich má baničku volnou, druhý pokrytou gázou stále
navlhčenou vodou pokojové teploty. Voda se vypařuje
rychlostí, která závisí na relativní vlhkosti vzduchu, a
tím ochlazuje teploměr. Z rozdílu teplot se určuje podle
tabulek vlhkost.
Novější metody využívají např. tenkých potézkých vrstev
Al2O3, které vratně pohlcují vzdušnou vlhkost; snímá se pak
např. jejich vodivost, permitivita nebo jiná elektrická
veličina závislá na obsahu vody.
Dotaz: Dá sa povedat že:
Intenzita je výkon, kolik energie za jednotku času vyzarime, zatimco
frekvence je typ svetla, v prípadě viditelného svetla jeho barva. V
prípadě rádiových vln je to to, co ladíte na rádiu, frekvence udává počty
kmitů za sekundu, ale nerika, jak silne kmitaji, jen jak rychle.
Fotony kmitaju predsa stale ryczhlostou svetla?
Dalo by sa to vysvetlit aj rozdielnou rychlostou kmitania. Ked si predstavite , ze svetelna vlna sa siri rovnobezne po povrchu stola z jedneho konca na druhy. A fotony v tejto vlne kmitaju nahoru a dolu, teda kolmo na povrch stola. A ked kmitaju pomalsie ako sa svetlo siri a drahu jednotlivych fotonov si zakreslite v case dostanete pomale radiove vlny. A ked kmitajú rychlejsie ako sa svetlo siri! , teda rychlejsie ako "c" ich draha bude vyzerat ako rychle vysokoenergeticke kmity gama paprskov s kratkou vlnovou dlzkou. Takze ako to je môzu kmitat fotony rychlejsie alebo pomalsie ako rychlost svetla?
(Marek K.)
Odpověď: Věta
"Fotony kmitajú predsa stále rychlosťou svetla"
nedává smysl. Fotony nejsou kuličky na gumičce, které by
kmitaly kolmo ke gumičce v klidu (a tedy kolmo ke směru
šíření), aby se dalo uvažovat o jejich rychlosti ve směru
kolmém k šíření vlny. Gumička (bez jakýchkoliv kuliček)
zobrazuje pole jako jakýsi "stav napjatosti
protostoru", který je "napjatý" (tj. je tam
nenulová intenzita E elektrického pole resp. indukce B
magnetického pole) někde a někdy víc, jinde a jindy méně, a
tyto změny se dějí úhlovou rychlostí (počet kmitů za
dobu), a nikoli posupnou rychlostí (dráha za dobu), která je
pro světlo ve vakuu vždy rovna c, tj. zhruba 300 000 000 km/s.
"Kuličky" (fotony) se tam neuplatňují jinak, než
tím, že energie gumy (pole) se mění jen v určitých
dávkách (kvantech). Fotony tedy nekmitají, ale řekněme, že
každý z nich, jak tak letí (rychlostí světla ve směru
šíření vlny), má svou barvu, která odpovídá frekvenci
kmitů. Představte si, že mají barvu, a navíc pro nás pro
teď třebas střídavě světlají a tmavnou s touto frekvencí,
tj. jeden kmit jim trvá dobu T. Pokud byste si značili jejich
na cestě (kudy letí) body, kde měly barvu nejsilnější, pak
dvě značky na cestě budou vzdáleny o délku L vlny. Ta je
rovna L = c.T, kde T je doba kmitu. Modrý foton bude mít tuto
vzdálenost zhruba poloviční oproti červenému, třebaže se
šíří ve vakuu přesně stejně rychle. Jenže ten modrý
kmitá rychleji.
Dotaz: V matfyz tabulkách je uváděna svislá hodnota intenzity magnetického pole Země
v našich končinách - a to 20 mikrotesla. Intenzita mg. pole se ale přece
udává v A/m. Jak vůbec vypadají siločáry mg. pole Země? (ing. R. Voráček)
Odpověď: Veličiny
intenzita magnetického pole (H s jednotkou A/m) a magnetická
indukce (B s jednotkou tesla [T]) jsou ve
vakuu úměrné veličiny (B = m0˙H) a
někdy jsou zaměňovány. Údaj 20 mikrotesla je jednoznačně
údaj o magnetické indukci.
Magnetické
indukční čáry Země: na severu je jižní pól zemského
magnetu. Proto se k němu natáčí severní pól magnetky.
(Opačné póly se přitahují, souhlasné odpuzují.
1) Hodnoty
v tabulkách udávají magnetickou indukci (T, tesla), nikoli
intenzitu (A/m). Pro označení "intenzita" jsou dva
"historické důvody" (doufám, že už brzo vyšumí):
a) dokud se užívala Gaussova soustava (cgs), bylo to jedno,
obojí se udávalo v Gaussech, a vzhledem k tomu, že
relativní permeabilita vzduchu je prakticky rovna jedné, bylo B=mu
H = H.
b) Sousloví "Intenzita zemského magnetického pole" se
chápalo tak trochu jako "Velikost ...", "Síla...",
"mohutnost..." apod.
Magnetická indukce je v různých
smyslech "důležitější" než intenzita, např. síla F
působící na náboj v elektromagnetickém poli je
F = q( E + v x B), kde q je náboj, v jeho rychlost (vektor), x
značí vektorový součin, E vektor elektrické intenzity a
B vektor magnetické indukce.
2) Siločáry mg. pole Země (ve
vzduchu nad Zemí zřejmě není rozdíl mezi směrem magnetické
intenzity H a magnetické indukce B) vypadají přesně tak, jak
znáte siločáry elektrického dipólu. Podívejte se třeba do
velké barevné učebnice FYZIKA (Halliday, Resnick, Walker),
čes. překlad Prometheus,2001, do kap. 22 a dalších.
Dotaz: Mohli byste mi jasně a přesně vysvětlit, co je a jak vzniká magnetismus? V knížkách se člověk sice dozví to, že magnetismus vzniká při pohybu elektronů nebo podobně,ale jaký je princip vzniku magnetického pole na úrovni kvantové fyziky? Taky jsem někde četl, že tu hrají určitou roli spiny elektronu, fotony apod. (Tomáš Psika)
Odpověď:
Podívejte se třeba do velké barevné učebnice FYZIKA
(Halliday, Resnick, Walker), čes. překlad Prometheus,2001, do
kap. 29 a dalších.
Stručně řečeno: 1) Formulujme otázku
nikoli "co je to magnetismus, magnetické pole" apod.,
protože slovníková odpověď typu "magnetismus je hromadné
označení pro jevy související s magnetickým polem" a
"magnetické pole je spolu s elektrickým polem nedělitelnou
součástí elektromagnetického pole" by vás těžko
uspokojila. Otázka "Co je A?" se zodpoví převedením A na
B,C,D.. která jsou známá -- nebo která pokládáme za
známá a nerozebíráme je takhle obecně (např. čas). Ptejme
se raději "jak vzniká magnetické pole, jak se projevuje, co
ho ovlivňuje apod." Pak lze říci toto: 2)
Některé elementární částice mají vlastnost zvanou
elektrický náboj, vyjádřitelnou jako celistvé násobky tzv.
elementárního náboje e. Proton má náboj e, elektron --e,
neutron 0 (tj. nemá elektrický náboj). Pro úplnost: tzv.
kvarky z nichž je mj. složen proton i neutron, mají náboje
2e/3 a --e/3, ale nevyskytují se nikdy samostatně. Náboj
soustavy je algebraickým součtem všech nábojů jejich
částí a náboj proto můžeme snadno pozorovat i na
makroskopické úrovni. 3) Částice
s elektrickým nábojem (budeme ji pro stručnost nazývat
prostě "náboj") působí na jiný náboj silou. Vykládáme
to zavedením pojmu pole:
a) náboj vytváří kolem sebe pole
b) pole se mění (šíří se jeho změny apod.)
c) je-li náboj v (cizím, nikoli jen vlastním) poli, působí
na něj síla podle vzorce F = q( E + v x B),
kde q je náboj, v jeho rychlost (vektor), x značí vektorový
součin, E vektor elektrické intenzity a B vektor magnetické
indukce. 4) Kvantová teorie a) popisuje částici i pole
stejnými prostředky, b) vystihuje skutečnost, že některé
základní charakteristiky částic (a tedy i polí) se mění
nikoli spojitě, ale po jistých dávkách -- kvantech; např.
kvantem elmg. pole je foton. Ale i částice samy mohu chápat a
popisovat jako kvanta jistých polí. Tím se vysvětluje, že
částice téhož druhu jsou v kvantové teorii navzájem
nerozlišitelné (asi jako jednotlivé koruny na vašem účtu ve
spořitelně). c) dává nám "pohybové rovnice", tj.
rovnice, jimiž se příslušná kvantová pole řídí. 5) Některé částice mají vlastnost zvanou
spin (samozřejmě rovněž kvantovanou). Ta je spojena jednak
s momentem hybnosti, jednak s magnetickým dipólovým
momentem. Cokoliv byste potřeboval vědět podrobněji či
přesněji, hledejte v (dobrých) učebnicích raději než v
(dobré) populární literatuře. (Od toho jsou totiž učebnice,
aby vám něco systematicky vysvětlily. Populární literatura
má za účel přitáhnout a udržet váš zájem, i když občas
jen ozobe ty třešničky z dortu a seriozní základ vám
nedá.)