FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 170 dotazů obsahujících »elektric«

22) Ochrana zemněním a nulováním06. 12. 2007

Dotaz: Dobrý den, můžete prosím vysvětlit,nebo odkázat, jaký je rozdíl, mezi ochranou zeměním a nulováním? Děkuji (Majka)

Odpověď: Ochrana zemněním a nulováním je dnes zahrnuta pod společný název "Ochrana samočinným odpojením od zdroje". Princip a podrobnější pojednání o této problematice najdete například v článku Co skrývá elektrická zásuvka?. Ochrana zemněním - viz část "Síť TT", ochrana nulováním - viz části "Síť TN-C a Síť TN-S".

(Peter Žilavý)   >>>  

23) Bezkontaktní teploměr19. 11. 2007

Dotaz: Vysvětlete funkci bezkontaktního teploměru pro měření teploty lidského těla, zejména kalibraci (J.Kozlovský)

Odpověď: Každé těleso sestává z elektricky nabitých částic (elektrony, protony). Tyto částice kmitají, a to tím více, čím je těleso teplejší. Tím ale vytvářejí elektromagnetické záření, čímž těleso ztrácí energii. Těleso ale také pohlcuje elektromagnetické záření vydávané okolními tělesy, čímž energii získává. Podle Stefanova-Boltzmannova zákona je těleso teploty T v rovnovážném stavu s elektromagnetickým polem, které nese energii rozloženou s hustotou úměrnou čtvrté mocnině teploty vyzařujícího tělesa. Vy sám, sedíte-li v klidu v místnosti, vyzařujete kolem sebe výkon zhruba 1 kW. Na druhou stranu ale předměty kolem Vás (o něco chladnější), vyzařují rovněž, a vy od nich přijímáte asi 900 W, takže vyzařujete (a průběžně potřebujete doplňovat) asi 100 W. Pokud např. z jedné strany toto teplo nedostáváte - např. je tam otevřený mrazák o podstatně nižší teplotě, pak to pociťujete tak, že "na vás čiší chlad".

Ve vyzařovaném elektromagnetickém záření jsou různé frekvence zastoupeny s různou intenzitou. Frekvence odpovídající maximální intenzitě roste úměrně teplotě, odpovídající energie se čtvrtou mocninou teploty. Při "pokojových teplotách" leží maximum ve vzdálené infračervené oblasti (často se mluví o "tepelném záření"). Stačí tedy mít čidlo dostatečně citlivé na infračervené záření v této oblasti a měřit, kolik záření přijímá.

Kalibrovat takový teploměr lze nejjednodušeji měřením záření z lázně známé teploty (změřené třebas obvyklým dostatečně přesným rtuťovým teploměrem).

(Jan Obdržálek)   >>>  

24) Elektricky neutrální atom17. 10. 2007

Dotaz: Prečo po prijatí jedného elektrónu do obalu atómu nie je vzniknutá častica elektricky neutrálna? (agáta Hrnčiríková)

Odpověď: Byl-li atom na začátku elektricky neutrální (měl stejný počet protonů v jádře jako elektronů v obalu), pak přijetím elektrou z něho vznikne iont, kde rovnost počtu elektronů a protonů není zachována (má o ten 1 elektron navíc), náboje se tedy nemůžou navzájem zcela vykompenzovat a tedy přestává jít o elektricky neutrální objekt.

(Jakub Jermář)   >>>  

25) Ekvipotenciální plochy17. 10. 2007

Dotaz: Zdar, potřebuju vedět co představuje ekvipotenciální plocha. dík (Monča)

Odpověď: Zavedeme-li si v prostoru potenciál, resp. potenciálové pole (tedy pokud klaždému bodu prostoru je přiřazen nějaký potenciál), potom ekvipotenciální plocha je množina bodů se stejným potenciálem. Obvykle jsou tyto množiny plochami (neboli v našem trojdimenzionálním světě jde obvykle o dvoudimenzionální množiny - proto tedy mluvíme o plochách).

V případě elektrického pole a jeho potenciálu jsou takovými ukázkovými ekvipotenciálními plochami například roviny mezi deskami kondenzátoru (myšleno roviny rovnoběžné s deskami) nebo třeba kulové sféry okolo bodového elektrického náboje.

V případě gravitačního potenciálu to mohou být např. místa o stejné nadmořské výšce - v rozměrech řádu jednotek metrů se nám tyto ekvipotenciální plochy nejspíš budou jevit jako roviny,při pohledu z vesmíru ale zjistíme, že jde spíše o soustředné sférické plochy se středem ve středu Země.

(Jakub Jermář)   >>>  

26) Platební karty18. 09. 2007

Dotaz: Dobrý den, zajímalo by mě, na jakém fyzikálním principu vlastně fungují kreditní (platební) karty a také jaký je rozdíl mezi magnetickou a čipovou kartou. Děkuji a přeji hezký den. (Martina)

Odpověď: Magnetické platební karty obsahují na své zadní straně magnetický pásek, na němž je nahrána informace o dané kartě (např. její identifikační číslo). Fyzikálně jde prakticky o týž princip, jako je použit pro uchovávání záznamu na magnetofonových kazetách či videokazetách, s tím rozdílem, že zde se uchovává méně dat, stačí tedy kousek pásku a ten je nalepen na plastovou kartičku. Záznam je proveden magnetizací silným magnetickým polem, čtení pak detekcí magnetického pole jednotlivých malých oblastí tohoto pásku.

Čipové karty uchovávají informace nikoli na magnetickém pásku, ale uloženy v mikročipu zalisovaném kdesi uvnitř karty. Komunikovat s tímto čipem lze prakticky dvojím způsobem. Jednou z možností je, že na kartě jsou vyvedeny kovové plošky vstupů, výstupů a napájení čipu (jak to lze vidět například na SIM kartě z mobilního telefonu). Prakticky se tedy přes tyto plošky na kartě přímo elektricky propojí čip s terminálem, který s ním komunikuje. Druhou možností je přenos dat z karty do terminálu (a případně zase zpět) pomocí elektromagnecikého vlnění. Terminál i čip na kartě v tom případě obsahují vysílač/přijímač elektromagnetických vln a komunikují spolu podobně jako když se dva kamarádi baví pomocí vysílaček. Jelikož však čip v kartě není v tomto případě připojen ke zdroji elektrické energie, obsahuje navíc karta indukční smyčku, pomocí níž získává energii z elektromagnetického vlnění vysílaného terminálem.

Pro úplnost bych měl ještě zmínit tzv. embosované (reliéfní) platební karty - jde o karty, které nejsou úplně ploché a některé informace jsou do nich vytlačeny (číslo karty, jméno majitele, ...). Obchodník tak nemusí číst magnetický pásek ani komunikovat s čipem, stačí, když si udělá otisk karty pomocí tzv. imprinteru - zařízení, kterému se lidově přezdívá "žehlička". Jde o technologicky zastaralý způsob platby, který se však stále ještě zejména v zahraničí používá.

(Jakub Jermář)   >>>