Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 170 dotazů obsahujících »elektric«
56) Elektrické nebo magnetické síly?
06. 03. 2006
Dotaz: Dobry den, muj dotaz se tyka magnetickeho pole. Pokud umistime rovnobezne dve
tyce a pustime jimi stejny proud, vznikne mezi tycemi magneticke pole. Proc ale
magneticke pole mezi elektrony vznika, kdyz jsou elektrony v tycich vuci sobe v
klidu? Resp. magneticke pole vznika pri pohybu elektronu, ale pohybu elektronu
vuci cemu? (Pavel)
Odpověď: Dělení elektromagnetického pole na elektrické a magnetické je jen jakési zjednodušení, které si můžeme dovolit, pokud vše popisujeme z jediné pevně zvolené soustavy (a pak jde o pohyb elektronů vůči této soustavě a magnetické účinky tohoto proudu). Pokud budeme uvažovat o přechodech mezi jednotlivými navzájem se pohybujícími soustavami, budeme muset brát elektromagnetické pole jako jeden celek. Zmíněný příklad s tyčemi protékanými souhlasně orientovaným proudem pak lze vykládat třeba tak, že elektrony jsou vůči sobě skutečně v klidu a pohybují se vůči nim protony (tedy vlastne kladně nabitý zbytek tyče). Co nyní elektrony "vidí"? Pohybující se tyč se musí dle teorie relativity zkrátit (tzv. kontrakce délek), je v ní tedy vyšší hustota protonů (stejný počet v nyní menším, "zkráceném" objemu) než elektronů (ty se přeci nepohybují, kontrakce délek se na nich proto neprojeví). Elektrony tedy vidí v druhé tyči vyšší hustotu protonů než elektronů a budou se s nimi elektrickými silami přitahovat. Původně magnetický jev tedy vykládáme v jiné vztažné soustavě jako jev elektrický.
Výše zmíněná teorie relativity elektrické a magnetické jevy nerozlišuje vůbec. Vektory elektrické a magnetické intenzity zde jsou nahrazeny jedním tenzorem - tenzorem elektromagnetického pole.
Dotaz: Dobrý den, zajímalo by mě, na jakém principu funguje expozimetr, jaký jsem dříve
používala při focení, na krabičku dopadne světlo a ručička ukazuje expozici.
Děkuji (krontik)
Odpověď: Pravděpodobně se jednalo o expozimetr se selenovým článkem. Na selenovém článku se po dopadu světla vytváří elektrické napětí úměrné intenzitě dopadajícího světla. Proud vyvolaný tímto napětím pak měříme galvanometrem - a právě jeho ručička nám na stupnici ukazuje doporučenou dobu expozice. Existují samozřejmě i další druhy expozimetrů, některé například využívají vlastností fotoodporu CdS. Fotoodpor sám však nevytváří žádné napětí, takže pro fungování expozimetru je nezbytný zdroj - obvykle elektrický monočlánek či baterie. Většina modernějších expozimetrů je pak postavena na bázi křemíkových fotodiod.
Dotaz: Dost dlouho mne trápí tento problém: nechápu, proč jsou v učebnicích pro ZŠ
kolem trvalého magnetu znázorňovány indukční čáry magnetického pole, když toto
pole evidentně není indukované. Není lepší je nazývat magnetické siločáry?
Podobně jako máme elektrické siločáry? Děkuji (Svatava Odložilíková)
Odpověď: Pojmenování různých fyzikálních veličin, modelů a teorií je do značné míry ovlivněno historií a tradicí, proto ne vždy je zcela intuitivní. Magnetické indukční čáry získaly své označení podle veličiny zvané magnetická indukce (obvykle se značí B). Zaměňovat magnetické indukční čáry a magnetické siločáry není možné, je mezi nimi (pro laika na první pohled ne zcela patrný) rozdíl:
Magnetické siločáry (též čáry pole vektoru megnetické intenzity; field lines of H) jsou orientované křivky mající ve všech bodech (kde H≠0) tečnu ve směru vektoru H. Odpovídá-li hustota siločar v každém bodě velikosti vektoru H, jsou magnetické siločáry modelem magnetického pole.
Magnetické indukční čáry (též čáry pole vektoru megnetické indukce; field lines of B) jsou orientované křivky mající ve všech bodech (kde B≠0) tečnu ve směru vektoru B. Odpovídá-li hustota indukčních čar v každém bodě velikosti vektoru B, jsou magnetické indukční čáry modelem silových účinků magnetického pole.
Dotaz: Zajímalo by mne, na jakém principu funguje plazmová obrazovka televizoru. (Miroslav Kadlec)
Odpověď: Plazmové panely jsou založeny z miniaturních barevných fleorescenčních reflektorů (luminoferů), které vytvářejí samotný obraz. Každý obrazový bod (pixel) je tvořen trojicí luminoferů – červeným, zeleným a modrým. Celý plazmový panel je vyroben ze dvou skleněných desek, mezi kterými jsou umístěny miniaturní skleněné buňky. Do nich byla během výrobního procesu vstříknuta a zapečetěna směs vzácných plynů neonu a xenonu. Pokud pustíte do luminoferu elektrický proud, vytvoří se z plynu plazma, která luminofer rozzáří.
Dotaz: Proč se při přenosu el. energie používá střídavé napětí? (Marie)
Odpověď: Napadají mě dva hlavní důvody:
1) Je pro nás snažší střídavé napětí (o dostatečném výkonu) vytvářet. V elektrárnách se obvykle používá alternátor přeměňující machanickou energii (rotující hřídel parou poháněné turbíny) na střídavé elektrické napětí a proud.
2) Střídavé napětí lze snadno transformovat. V přenosové soustavě (v drátech vedoucích od elektrárny) je výhodné používat vysokého napětí - například až 400 kV - kvůli menším ztrátam, zatímco v elektrické zásuvce je potřeba mít pouze 230 V. Je tedy nezbytné napětí někde na cestě mezi elektrárnou a elektrickou zásuvou (několikrát) transformovat, což by u stejnosměrného napětí bylo problematické.