Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 170 dotazů obsahujících »elektric«
62) Rychlost elektrického proudu
23. 09. 2005
Dotaz:
Rád bych se zeptal, jaká je rychlost elektronu (toku elektronů) ve vodiči při průchodu elektrického proudu. Je tato rychlost rovna rychlosti světla a zda je tato rychlost závislá na velikosti el. proudu, resp. el. napěti, nebo je konstantní? Děkuji
Elektrony se ve vodiči při pokojové teplotě chaoticky pohybují obrovskými rychlostmi (okolo 106 m·s-1). Tento pohyb je ale zcela chaotický a v celkovém součtu tedy nevytváří žádný výsledný proud. Pokud na vodič přiložíme napětí, začnou se elektrony (aniž by přitom ustaly ve svém chaotickém pohybu) pomaloučku sunout jedním směrem – říkáme, že teče proud. Rychlost tohoto posuvného pohybu (nazýváme ji driftová rychlost) je ale velice malá – asi jen 10-5 m·s-1, tedy o 11 řádů nižší než rychlost chaotického pohybu! Driftová rychlost je do určité míry závislá na velikosti přiloženého napětí.
Dotaz: Někde
jsem četl, že červené světlo neoslňuje, čím je to způsobeno? Jaká vlnová délka
oslňuje nejméně? Používá se ze stejných důvodů červené osvětlení i při
vyvolávání fotografií? (Bohouš)
Odpověď: Subjektivní vnímání intenzity světla je dané citlivostí oka na různé barvy.
Lidské oko má největší citlivost kolem 500 nm (zelená barva) a červenou
barvu již vnímá podstatně méně intenzivně. Červené osvětlení u vyvolávání
fotografií se používá z toho důvodu, že fotochemické procesy, probíhající
při dopadu fotonu na negativ filmu, jsou take silně závislé na vlnové délce
(barvě) světla. A pro červenou barvu jsou podstatně slabší než třeba pro
modrou. Takže při osvětlení negativu červenou barvou nedojde při jeho
vyvolávání ke znehodnocení dříve vyfoceného obrazu.
Dotaz: Dojde-li k ponoření např. el. vysoušeče, rádia aj. do vody ve vaně, stává se
koupající se jedinec obětí takového počínání, nebo se mu z principu nestane
vůbec nic? Pokud jsou oba póly ve vodě a blízko sebe (tj. celý spotřebič je
ponořen), má elektrický proud důvod protékat ve vodě jinou cestou, než jen
blízkým okolím kontaktů - i v případě že vana je uzemněna? (Standa)
Odpověď: Pokud nebudete mou odpověď experimentálně ověřovat, pak se odvažuji s
Vámi souhlasit, pokud si celou akci představujete tak, že zapnutý
vysoušeč ponoříte do vody a potom do té vody strčíte ruku, nebo do té
vany vlezete. Často citovaná nebezpečí fénování ve vaně
spočívají v takovém postupu, že sedíce ve vaně držíte vysoušeč v
mokré ruce. Potom ovšem můžete tvořit paralelní větev elektrického
obvodu s 230 V a elektrický proud má chuť samozřejmě cestovat více
i schůdnější cestou vaším tělem, než vedením vysoušeče.
Po několika diskusích s kolegy se shodujeme na tom, že výsledek takové situace je velmi těžko předvídatelný. Pokud bude vše v pořádku, poteče si proud ve vodě někde uvnitř spotřebiče tak, jak naznačujete. Stačí ale například nalomený vodič ve šňůře a všechno bude jinak. Tedy není ani bezpečné si hrát se spotřebičem připojeným k síti ve vaně, ani hození podobného spotřebiče nezaručuje rychlou smrt koupajícího se.
(M. Rojko, J. Dolejší)
Upřesnění: U elektrického proudového pole je možno stejně jako u pole statického použít princip superpozice. Přeci se tak na laborkách demonstruje tvar pole nábojů s pomocí elektrolytické vany. Ve vodě blízko u spirály potečou příčné proudy, to je pravda, ale zároveň k tomu se spirála bude navenek vůči vaně chovat tak, jako by byla celá na přibližně stejném napětí, jako je průměrná hodnota mezi krajními vodiči. (Díky úbytkům na spirále to bude trochu méně, ale ne o moc.) A to v našem případě rozhodně není nula, ale skoro polovina napětí fázového. (Předpokládám, že je spirála rovnoměrně navinutá a se stejnou vazbou jejich částí na okolí, ale to je obvykle splněno. Aby bylo průměrné napětí spirály vůči vodě nulové, musela by být místo na středního vodič připojena na stejně velkou fázi posunutou o 180°) Spirála se tedy stane směrem do vany zdrojem proudu, který může dosáhnout řádově ampéry a tudíž bude velmi nebezpečný. (Ještě dvakrát horší situace - ale to už je mimo rámec úlohy - by nastala v případě spotřebiče druhé třídy a s jednopólovým vypínačem, pokud je vypnut ve středním vodiči. To lze, protože zástrčka bez ochrnného vodiče není orientovaná. Pak dostanem na spirálu celou fázi. Slušní výrobci dnes dávají dvojpólový vypínač.)
Upřesnění odpovědi nám zaslal pan Jiří Zbytovský. Děkujeme!
Dotaz: Jak dlouhý výboj může mít napětí 60 000 V? Existuje nějaká úměra mezi délkou
výboje ve vzduchu a napětím? (dan)
Odpověď:
Pro vznik tohoto druhu nesamostatného výboje v dielektriku je rozhodující velikost intenzity elektrického pole. U každého materiálu existuje mezní hodnota E (tzv. dielektrická pevnost), je-li překročena, dochází k výboji.
U vzduchu to je asi 30 kV/cm (ano, i kV/cm jednotkou elektrické intenzity, jak je to s úměrou mezi délkou výboje a napětím je nyní jasné). 60 kV je schopno prorazit asi 2 cm vzduchu.
Bohužel, dielektrická pevnost není příliš dobře definovaná materiálová konstanta. Závisí na mnoha parametrech jako teplota, vlhkost, doba vystavení materiálu napětí apod. Např. u vlhkého vzduchu může být pevnost klidně 10 kV/cm, takže stejným napětím prorazíme trojnásobnou vzdálenost.
Proražení dielektrického materiálu se anglicky řekne "dielectric breakdown", dielektrická pevnost je "dielectric strength". Zadáním těchto hesel na Google lze najít mnoho dalších informací.
66) Magnetická síla a vztažná soustava pozorovatele
17. 03. 2004
Dotaz: Dva vodiče, jimiž prochází stejně orientovaný el. proud, se přitahují a magnetická síla přitahování je úměrná procházejícímu proudu, tedy trochu nepřesně "rychlosti" nosilelů náboje... Mám dvě otázky: 1.Co se stane v
případě, že spojím svou pozorovací soustavu s náboji? Zmizí síla, zmizí
magnetismus? 2.Analogicky, spojím svou pozorovací soustavu s urychlujícími se náboji, které vyzařují fotony. Budou pak fotony nebo bude "tma", resp. bude pro někoho "tma", pro někoho "světlo"? Je tedy existence fotonu určená soustavou
pozorovatele? (PK)
Odpověď: Odpovím na něco jiného a z hlediska odpovědi jednoduššího: věřím že vám to
pomůže pochopit problém lépe. (Pokud ne, tak se klidně zeptejte znova,
podrobněji.) Přenesu-li se mezi dvěma inerciálními vztažnými systémy, když v
jednom bylo jen elektrické pole, pak ve druhém bude vedle (trošku změněného)
elektrického pole také pole magnetické. (Přenos musím popsat relativistickou
Lorentzovou transformací, nikoli klasickou Galileovou.) Proto se také mluví vždy
o elektromagnetickém poli, majícím v daném vztažném systému složku
elektrickou a složku magnetickou. Stejně jako x-ová a y-ová složka vektoru bude
jiná ve vztažných systémech, které jsou vůči sobě natočené, a ve vhodném systému
může jedna z nich vymizet, tak také budou jiné elektrické a magnetické složky
téhož elektromagnetického pole, pozorujeme-li je z navzájem se pohybujících
vztažných systémů. Mám-li tedy např. dva elektrické náboje vůči sobě v klidu a
popisuji-li je ve vztažné soustavě, která je vůči nim v klidu, pak snadno určím
jejich vzájemnou sílu z Coulombova zákona, a nic jiného nepotřebuji. Pozoruji-li
však totéž ze systému, který se kolmo vůči nábojům pohybuje, pak vidím dva
letící náboje (letící rovnoběžně a stejně rychle, pochopitelně), které na sebe
nejenom působí elektrostaticky (jejich náboje q jsou invarianty a nemění se s
pohybem, rovněž jejich vzdálenost zůstává stejná. Navíc je tu ale magnetické
působení: pohybující se náboj je jakoby "element" elektrického proudu,
vyvolává tedy magnetické pole. A obráceně, druhý náboj se proto tako pohybuje v
magnetickém poli (prvního náboje).
Co se týče druhého dotazu, uvažujte raději o elektromagnetické vlně (světlu) než o fotonech; jimi byste tam vnášel kvantování, a to pro naše účely není podstatné. Letíte-li i statickým elektrickým polem se zrychlením, pak pozorujete záření. Problematika je složitá sama o sobě mj. tím, jakou část energie vlastně připíšu záření. (Názorně řečeno, dva obrazy záření, kde ve druhém navíc proudí energie v uzavřených kruzích, jsou nerozlišitelé.) Partie klasické elektrodynamiky popisující záření nejsou jednoduché (hesla: retardované potenciálny, Liénardovy - Wiechertovy potenciály, Hertzův dipól). Najdete je v klasické literatuře, úvod je např. v Sedlák, Štoll:
Elektřina a magnetismus (Karolinum, Praha 1993). Podrobně vysvětleny a
propočítány budou na mé webové stránce koncem dubna v Klasické elektrodynamice.