FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 170 dotazů obsahujících »elektric«

63) Červené osvětlení při vyvolávání fotografií12. 11. 2004

Dotaz: Někde jsem četl, že červené světlo neoslňuje, čím je to způsobeno? Jaká vlnová délka oslňuje nejméně? Používá se ze stejných důvodů červené osvětlení i při vyvolávání fotografií? (Bohouš)

Odpověď: Subjektivní vnímání intenzity světla je dané citlivostí oka na různé barvy. Lidské oko má největší citlivost kolem 500 nm (zelená barva) a červenou barvu již vnímá podstatně méně intenzivně. Červené osvětlení u vyvolávání fotografií se používá z toho důvodu, že fotochemické procesy, probíhající při dopadu fotonu na negativ filmu, jsou take silně závislé na vlnové délce (barvě) světla. A pro červenou barvu jsou podstatně slabší než třeba pro modrou. Takže při osvětlení negativu červenou barvou nedojde při jeho vyvolávání ke znehodnocení dříve vyfoceného obrazu.
(RNDr. Petr Němec, Ph.D.)   >>>  

64) Elektrické spotřebiče ve vodě23. 04. 2004

Dotaz: Dojde-li k ponoření např. el. vysoušeče, rádia aj. do vody ve vaně, stává se koupající se jedinec obětí takového počínání, nebo se mu z principu nestane vůbec nic? Pokud jsou oba póly ve vodě a blízko sebe (tj. celý spotřebič je ponořen), má elektrický proud důvod protékat ve vodě jinou cestou, než jen blízkým okolím kontaktů - i v případě že vana je uzemněna? (Standa)

Odpověď: Pokud nebudete mou odpověď experimentálně ověřovat, pak se odvažuji s Vámi souhlasit, pokud si celou akci představujete tak, že zapnutý vysoušeč ponoříte do vody a potom do té vody strčíte ruku, nebo do té vany vlezete. Často citovaná nebezpečí fénování ve vaně spočívají v takovém postupu, že sedíce ve vaně držíte vysoušeč v mokré ruce. Potom ovšem můžete tvořit paralelní větev elektrického obvodu s 230 V a elektrický proud má chuť samozřejmě cestovat více i schůdnější cestou vaším tělem, než vedením vysoušeče.
Po několika diskusích s kolegy se shodujeme na tom, že výsledek takové situace je velmi těžko předvídatelný. Pokud bude vše v pořádku, poteče si proud ve vodě někde uvnitř spotřebiče tak, jak naznačujete. Stačí ale například nalomený vodič ve šňůře a všechno bude jinak. Tedy není ani bezpečné si hrát se spotřebičem připojeným k síti ve vaně, ani hození podobného spotřebiče nezaručuje rychlou smrt koupajícího se.
(M. Rojko, J. Dolejší)

Upřesnění: U elektrického proudového pole je možno stejně jako u pole statického použít princip superpozice. Přeci se tak na laborkách demonstruje tvar pole nábojů s pomocí elektrolytické vany. Ve vodě blízko u spirály potečou příčné proudy, to je pravda, ale zároveň k tomu se spirála bude navenek vůči vaně chovat tak, jako by byla celá na přibližně stejném napětí, jako je průměrná hodnota mezi krajními vodiči. (Díky úbytkům na spirále to bude trochu méně, ale ne o moc.) A to v našem případě rozhodně není nula, ale skoro polovina napětí fázového. (Předpokládám, že je spirála rovnoměrně navinutá a se stejnou vazbou jejich částí na okolí, ale to je obvykle splněno. Aby bylo průměrné napětí spirály vůči vodě nulové, musela by být místo na středního vodič připojena na stejně velkou fázi posunutou o 180°) Spirála se tedy stane směrem do vany zdrojem proudu, který může dosáhnout řádově ampéry a tudíž bude velmi nebezpečný. (Ještě dvakrát horší situace - ale to už je mimo rámec úlohy - by nastala v případě spotřebiče druhé třídy a s jednopólovým vypínačem, pokud je vypnut ve středním vodiči. To lze, protože zástrčka bez ochrnného vodiče není orientovaná. Pak dostanem na spirálu celou fázi. Slušní výrobci dnes dávají dvojpólový vypínač.)

Upřesnění odpovědi nám zaslal pan Jiří Zbytovský. Děkujeme!
  >>>  

65) Délka elektrického náboje08. 04. 2004

Dotaz: Jak dlouhý výboj může mít napětí 60 000 V? Existuje nějaká úměra mezi délkou výboje ve vzduchu a napětím? (dan)

Odpověď:
Pro vznik tohoto druhu nesamostatného výboje v dielektriku je rozhodující velikost intenzity elektrického pole. U každého materiálu existuje mezní hodnota E (tzv. dielektrická pevnost), je-li překročena, dochází k výboji.
U vzduchu to je asi 30 kV/cm (ano, i kV/cm jednotkou elektrické intenzity, jak je to s úměrou mezi délkou výboje a napětím je nyní jasné). 60 kV je schopno prorazit asi 2 cm vzduchu.
Bohužel, dielektrická pevnost není příliš dobře definovaná materiálová konstanta. Závisí na mnoha parametrech jako teplota, vlhkost, doba vystavení materiálu napětí apod. Např. u vlhkého vzduchu může být pevnost klidně 10 kV/cm, takže stejným napětím prorazíme trojnásobnou vzdálenost.
Proražení dielektrického materiálu se anglicky řekne "dielectric breakdown", dielektrická pevnost je "dielectric strength". Zadáním těchto hesel na Google lze najít mnoho dalších informací.
(Honza Houštěk)   >>>  

66) Magnetická síla a vztažná soustava pozorovatele17. 03. 2004

Dotaz: Dva vodiče, jimiž prochází stejně orientovaný el. proud, se přitahují a magnetická síla přitahování je úměrná procházejícímu proudu, tedy trochu nepřesně "rychlosti" nosilelů náboje... Mám dvě otázky:
1.Co se stane v případě, že spojím svou pozorovací soustavu s náboji? Zmizí síla, zmizí magnetismus?
2.Analogicky, spojím svou pozorovací soustavu s urychlujícími se náboji, které vyzařují fotony. Budou pak fotony nebo bude "tma", resp. bude pro někoho "tma", pro někoho "světlo"? Je tedy existence fotonu určená soustavou pozorovatele? (PK)

Odpověď: Odpovím na něco jiného a z hlediska odpovědi jednoduššího: věřím že vám to pomůže pochopit problém lépe. (Pokud ne, tak se klidně zeptejte znova, podrobněji.) Přenesu-li se mezi dvěma inerciálními vztažnými systémy, když v jednom bylo jen elektrické pole, pak ve druhém bude vedle (trošku změněného) elektrického pole také pole magnetické. (Přenos musím popsat relativistickou Lorentzovou transformací, nikoli klasickou Galileovou.) Proto se také mluví vždy o elektromagnetickém poli, majícím v daném vztažném systému složku elektrickou a složku magnetickou. Stejně jako x-ová a y-ová složka vektoru bude jiná ve vztažných systémech, které jsou vůči sobě natočené, a ve vhodném systému může jedna z nich vymizet, tak také budou jiné elektrické a magnetické složky téhož elektromagnetického pole, pozorujeme-li je z navzájem se pohybujících vztažných systémů. Mám-li tedy např. dva elektrické náboje vůči sobě v klidu a popisuji-li je ve vztažné soustavě, která je vůči nim v klidu, pak snadno určím jejich vzájemnou sílu z Coulombova zákona, a nic jiného nepotřebuji. Pozoruji-li však totéž ze systému, který se kolmo vůči nábojům pohybuje, pak vidím dva letící náboje (letící rovnoběžně a stejně rychle, pochopitelně), které na sebe nejenom působí elektrostaticky (jejich náboje q jsou invarianty a nemění se s pohybem, rovněž jejich vzdálenost zůstává stejná. Navíc je tu ale magnetické působení: pohybující se náboj je jakoby "element" elektrického proudu, vyvolává tedy magnetické pole. A obráceně, druhý náboj se proto tako pohybuje v magnetickém poli (prvního náboje).
Co se týče druhého dotazu, uvažujte raději o elektromagnetické vlně (světlu) než o fotonech; jimi byste tam vnášel kvantování, a to pro naše účely není podstatné. Letíte-li i statickým elektrickým polem se zrychlením, pak pozorujete záření. Problematika je složitá sama o sobě mj. tím, jakou část energie vlastně připíšu záření. (Názorně řečeno, dva obrazy záření, kde ve druhém navíc proudí energie v uzavřených kruzích, jsou nerozlišitelé.) Partie klasické elektrodynamiky popisující záření nejsou jednoduché (hesla: retardované potenciálny, Liénardovy - Wiechertovy potenciály, Hertzův dipól). Najdete je v klasické literatuře, úvod je např. v Sedlák, Štoll: Elektřina a magnetismus (Karolinum, Praha 1993). Podrobně vysvětleny a propočítány budou na mé webové stránce koncem dubna v Klasické elektrodynamice.
(J. Obdržálek)   >>>  

67) Proč náboj v gravitačním poli nevyzařuje?10. 03. 2004

Dotaz: Když je elektrický náboj urychlovaný, tak vyzařuje elektromagnetické vlny. Podle obecné teorie relativity je v laboratoři fyzikálně nerozlišitelné, jestli je laboratoř urychlovaná se zrychlením "a", nebo je v klidu v gravitačním poli, kde působí tíže g=a. To ale znamená, že nabité těleso, které je v klidu v gravitačním poli by také mělo vyzařovat(?). V tom případě by ale bylo v principu nevyčerpatelným zdrojem energie (např. když by bylo umístěno v uzavřeném prostoru ve vakuu, aby se jeho náboj nezmenšoval), takže perpetum mobile. Někde je v úvaze chyba ....? (František Kříž)

Odpověď: Řešení vašeho "paradoxu", totiž že i těleso stojící v klidu v homogenním gravitačním poli vyzařuje elektromagnetické a gravitační vlny, spočívá v tom, že "záření" je GLOBÁLNÍ pojem, který není definovatelný jen pomoci čistě lokálních úvah a charakteristik. Proto nelze v tomto případě použít argumentů opírajícího se o princip ekvivalence: ten totiž právě platí POUZE LOKÁLNĚ.
Abychom mohli hovořit o záření, je nutno vyšetřovat asymptotické chování polí (elektromagnetických nebo gravitačních) dostatečně daleko od zdrojů. Musíme tedy především vědět, kde se nekonečno nachází (to není v obecné relativitě vůbec triviální otázka), a pak zkoumat, jak rychle klesá velikost příslušného pole, když se do takového nekonečna blížíme.
Prakticky většinou uvažujeme situaci, kdy zdroj je izolovaný (jedná se například o elektrony pohybující se ve vysílací anténě, anebo o dvojhvězdný systém, který periodicky deformuje prostoročas). Pak "zářivé" složky pole jsou takové, které klesají jako 1/r, kde r je vzdálenost od těžiště zdroje. Abychom tedy mohli hovořit o záření, používáme speciálně zvolenou nerotující vztažnou soustavu, ve které se dají příslušné složky pole dobře a snadno analyzovat. Konkrétně: pokud jde o gravitační pole, platí, že každé těleso, které se pohybuje zrychleně vůči této speciální soustavě, bude vyzařovat gravitační vlny, jež budou odnášet část energie zdroje. Bude-li například těleso padat volným pádem v gravitačním poli Země, bude se pohybovat ze zrychlením VŮČI zemskému středu, který je totožný s počátkem výše zmíněné speciální soustavy. Proto bude vyzařovat gravitační vlny, jejichž energie bude úměrná hmotnosti tělesa, jeho zrychlení a gravitační konstantě, a nepřímo úměrná páté mocnině rychlosti světla (což je nesmírně malé číslo, a proto budou takové vlny velmi slabé). Podobně také družice obíhající po kruhové dráze okolo Země bude vyzařovat (rovněž slabě) gravitační vlny. Naproti tomu těleso, které bude vůči centru v klidu nebo pohybu rovnoměrně přímočarém, zářit nebude.
Náboj stojící na jednom místě v gravitačním poli Země tedy nebude vyzařovat elektromagnetické vlny (zanedbáme-li ovšem malé zrychlení způsobené rotací Země či oběhem Země kolem Slunce), nelze ho tedy použít coby "perpetum mobile".
(Doc. RNDr. Jiří Podolský, Csc.)   >>>