Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 170 dotazů obsahujících »elektric«
67) Proč náboj v gravitačním poli nevyzařuje?
10. 03. 2004
Dotaz: Když je elektrický náboj urychlovaný, tak vyzařuje elektromagnetické
vlny. Podle obecné teorie relativity je v laboratoři fyzikálně
nerozlišitelné, jestli je laboratoř urychlovaná se zrychlením "a", nebo
je v klidu v gravitačním poli, kde působí tíže g=a. To ale znamená, že
nabité těleso, které je v klidu v gravitačním poli by také mělo
vyzařovat(?). V tom případě by ale bylo v principu nevyčerpatelným
zdrojem energie (např. když by bylo umístěno v uzavřeném prostoru ve
vakuu, aby se jeho náboj nezmenšoval), takže perpetum mobile. Někde je v
úvaze chyba ....? (František Kříž)
Odpověď: Řešení vašeho "paradoxu", totiž že i těleso stojící v klidu v
homogenním gravitačním poli vyzařuje elektromagnetické a gravitační vlny, spočívá v tom, že "záření" je GLOBÁLNÍ pojem, který není definovatelný jen
pomoci čistě lokálních úvah a charakteristik. Proto nelze v tomto případě
použít argumentů opírajícího se o princip ekvivalence: ten totiž právě
platí POUZE LOKÁLNĚ.
Abychom mohli hovořit o záření, je nutno vyšetřovat asymptotické chování
polí (elektromagnetických nebo gravitačních) dostatečně daleko od
zdrojů. Musíme tedy především vědět, kde se nekonečno nachází (to není v
obecné relativitě vůbec triviální otázka), a pak zkoumat, jak rychle
klesá velikost příslušného pole, když se do takového nekonečna blížíme.
Prakticky většinou uvažujeme situaci, kdy zdroj je izolovaný (jedná se
například o elektrony pohybující se ve vysílací anténě, anebo o
dvojhvězdný systém, který periodicky deformuje prostoročas). Pak
"zářivé" složky pole jsou takové, které klesají jako 1/r, kde r je
vzdálenost od těžiště zdroje. Abychom tedy mohli hovořit o záření,
používáme speciálně zvolenou nerotující vztažnou soustavu, ve které se
dají příslušné složky pole dobře a snadno analyzovat. Konkrétně: pokud
jde o gravitační pole, platí, že každé těleso, které se pohybuje
zrychleně vůči této speciální soustavě, bude vyzařovat gravitační vlny,
jež budou odnášet část energie zdroje. Bude-li například těleso padat
volným pádem v gravitačním poli Země, bude se pohybovat ze zrychlením
VŮČI zemskému středu, který je totožný s počátkem výše zmíněné speciální
soustavy. Proto bude vyzařovat gravitační vlny, jejichž energie bude
úměrná hmotnosti tělesa, jeho zrychlení a gravitační konstantě, a
nepřímo úměrná páté mocnině rychlosti světla (což je nesmírně malé
číslo, a proto budou takové vlny velmi slabé). Podobně také družice
obíhající po kruhové dráze okolo Země bude vyzařovat (rovněž slabě)
gravitační vlny. Naproti tomu těleso, které bude vůči centru v klidu nebo
pohybu rovnoměrně přímočarém, zářit nebude.
Náboj stojící na jednom místě v gravitačním poli Země tedy nebude
vyzařovat elektromagnetické vlny (zanedbáme-li ovšem malé zrychlení
způsobené rotací Země či oběhem Země kolem Slunce), nelze ho tedy použít
coby "perpetum mobile".
68) Proč se dvě tělesa přitahují? Jak rychle se šíří gravitace?
27. 02. 2004
Dotaz: Nikde se mi doposud nepodařilo najít sebemenší informaci o principu gravitační
síly. Proč se vůbec dvě hmotná tělesa přitahují? Jakou rychlostí se gravitační
síla (nebo změna gravitační síly) šíří a zda se vůbec šíří? Pokud se gravitace
šíří rychlostí světla, jak to že "uniká" z černé díry, která jak známo nepustí
díky obrovské gravitaci ani foton... Existuje graviton? Existuje-li je hmotný
podobně jako foton? (Ondřej Hasman)
Odpověď: Princip gravitační síly + proč se tělesa přitahují: Ptám-li se na PRINCIP
něčeho ("co to je ...", "proč se to děje ...") pak
to chci převést na nějaké jiné jevy, které pokládám za ZNÁMÉ. Takže např. na
otázku "Co to je zvuk?" odpovídám třebas: "Sluchový vjem,
který vznikl ve tvém středním uchu tím, že se ti tam chvěje bubínek pod vlivem
vln střídavě stlačeného a zředěného vzduchu ....". Doufám, že víš
a bereš jako známé, co je to vjem, střední ucho, bubínek, vlna, stlačení,
zředění atd. Potíž nastane u "základních" pojmů, jako je čas,
prostor, síla atp., které nemám na co jednoduššího převést. Zpravidla se tam pak
točíme v kruhu tím, že je několik vzájemně svázaných pojmů, a my popisujeme
jejich vzájemné vztahy (síla, práce, energie...).
Tedy: zabývejme se ve fyzice nejprve popisem toho, jak se tělesa chovají. Zjistíme, že se (mj.) všechna tělesa přitahují silou, která ... atd. Tato síla je univerzální v tom smyslu, že je dána výhradně hmotností m, nikoli např. materiálem (obecným jazykem: gravitace působí na všechny předměty stejně"). Einstein si uvědomil, že tuto vlastnost mají jinak jen setrvačné síly (odstředivá, Coriolisova...), které lze převést na geometrii prostoru, v němž děj popisuji. Podařilo se mu pak i gravitaci vyjádřit jako goemetrickou vlastnost prostoru. Změna gravitace se šíří rychlostí světla. (Podrobnější rozbor tohoto tvrzení ovšem vyřaduje porozumění
geometrie prostoročasu v obecné teorii relativity.)
Gravitace je vlastností všech hmot ve všech stavech, tedy i černé díry, a neuniká z ní. Představa unikání předpokládá kvantování gravitačního pole (graviton) a chování gravitonu jako částice. Představa gravitonu, popisujícího gravitaci, by v případě, že by měl sám nenulovou hmotnost a podléhal tak svému působení, je pochopitelně značně složitější, než např. představa klasického elektrického náboje. Kvantování gravitačního pole, není pokud vím dosud důsledně zvládnuto: umíme perfektně kvantovat lineární teorie (např. elmg. pole), ale rovnice gravitačního pole jsou nelineární. Podaří-li se ti to, máš Nobelovu cenu prakticky jistou. Ovšem k tomu, abys přišel na něco, co ještě lidi neznají, je dobře vědět to, co už znají, abys neobjevoval objevené.
Dotaz: Není mi zcela jasné, proč se v distribučních trafech (3x400V) uzel vinutí
(nulák) musí spojit ze zemí (zakopaná Cu deska). Nebylo by bezpečnější, kdyby
zem byla galvanicky oddělena od výstupu trafa? Předešlo by se úrazu proudem
dotykem fázového vodiče. Nevím, zda je to z ekonomických důvodů nebo ochrana
před bleskem... Nebylo by bezpečnější pro každou domácnost oddělovací trafo, kde
by se žádná svorka sekundáru neuzemnila? (Jirka)
Odpověď: S tím „jednopólovým dotykem“ fázového vodiče (označme L1) by to byla pravda pouze do té doby, než by na jiném místě síte došlo (např. v důsledku poruchy) ke spojení některého z ostatních fázových vodičů (L2, L3) resp. středního vodiče (N) se zemí. Pak by se na tomto vodiči (L1) objevilo napětí vůči zemi až 400V resp. 230V. Tato porucha by navíc mohla přežívat při izolovaném uzlu vinutí velmi dlouho, protože nevznikne žádný zkratový proud (neuzavře se obvod), který by přerušil pojistku a tím odpojil vodič s poruchou od zdroje.
(Někdy je to však žádoucí - např. v průmyslových sítích (IT), kde je potřeba nepřetržitý chod, i když dojde k poruše izolace na jedné fázi - není to však případ distribučních sítí.)
Spojení uzlu vinutí transformátoru se zemí principielně umožňuje činnost ochrany zemněním (sítě TT) resp. nulováním (sítě TN-S, TN-C) (dnes souhrnně ochrana samočinným odpojením od zdroje) neživých částí elektrických zařízení (např. kovová skříň ledničky, pračky, kostra žehličky...) před nebezpečným dotykovým napětím vůči zemi. Činnost této ochrany znázorňuje přiložený obrázek a následující text: V důsledku poruchy došlo ke spojení fázového vodiče s kostrou přístroje. Díky jejímu spojení přes ochranný vodič (PE) s uzlem vinutí transformátoru dojde okamžitě k přepálení pojistky a tím i k odpojení poškozeného přístroje od sítě. Spojení uzlu vinutí transformátoru (resp. také ochranného vodiče PE v rozvadeči) se zemí zajistí, že na vodivé kostře přístroje nevznikne větší dotykové napětí vůči zemi než je úbytek napětí na ochranném vodiči (PE) při zkratovém proudu. Velikost tohoto dotykového napětí a dobu odpojení spotřebiče pojistkou stanovují normy.
Co se týče toho transformátoru pro domácnost - platí totéž co bylo napsáno pro „velkou síť“. Oddělovací transformátor (1:1) se však používá např. při opravách el. přístrojů, kde by byla větší pravděpodobnost dotyku fázového vodiče. V tomto případě je však na sekundární vinutí transformátoru připojen pouze jeden přístroj.
Další a související informace (např. ochrana pomocí proudových a napěťových chráničů) je možno najít např. v knize Václav Honys: Nová příručka pro zkoušky elektrotechniků 1997-8
(nebo v některém jejím aktualizovaném vydání) nebo na serveru www.elektrika.cz.
70) Mechanický model napětí, zesilovače a střídavého proudu
23. 01. 2004
Dotaz: Prolétl jsem články o elektřině a magnetismu, ale to co jsem hledal, jsem nenašel. Vždy se dovídám dogmata.
1.) Tak např. vždy používáte el. napětí. Do obvodu musíme zavést el. napětí, aby mohl téct proud. Ten ale téct vůbec nemusí.. tomu nerozumím, co je tedy el. napětí, resp. jak si ho představit (a to na molekulární úrovni -
pokud tak lze).
2.) V učebnici Elektřina a magnetismus pro střední školy je zakreslen obvod s
tranzistorem - obr. "Tranzistorový zesilovač"- podobný lze nalézt i jinde (i ve
skriptech elektroniky). Vždy tam je řečeno, že na výstupu je obrácená fáze
napětí, ale proč to tak je? Fyzikář mi to vysvětlil tak, že jsem si připadal,
jako by mi neodpovídal na otázku - asi jsem jediný, kdo tomu nerozumí. U tohoto
obvodu nerozumím ani vstupu, výstupu a podobným pojmům, v knize definovány
nejsou.
3.) Další problém je s představou střídavého proudu. Kudy jdou
elektrony případně díry? U stejnosměrného je jasně dané, kde je + a kde -, ale
střídavý, chvíli jde do obvodu na obě strany + a pak zase -. Byl bych rád, kdyby
jste mi pomohli v tom udělat jasno. (Liam)
Odpověď: K 1. otázce: Co je to napětí?
Než napíši obecnou odpověď, popíši něco obdobného v mechanice.
Kolem Země je gravitační pole. Když umístím 10 m nad podlahu kilovku, bude v
tom místě mít jinou potenciální energii než na podlaze. Rozdíl bude
100 J. Mohli bychom říci, že mezi těmi místy (i když tam žádné
kilovky nebudou) je "mechanické napětí" 100 J/kg. Toto
"mechanické
napětí" charakterizuje ROZDÍL STAVŮ mezi těmito dvěma místy
gravitačního pole. Nic "molekulárního" si představit k tomu
nedovedu, to co jsem popsal, platí i kdyby kolem Země bylo vakuum. Dosaďte místo
Země nabité těleso, místo kilovky nabitou kuličku jednou blíž a
jednou dál a opět můžeme říci, že v těchto dvou bodech bude mít
nabitá kulička rozdílnou potenciální elektrickou energii, rozdíl
těchto energií přepočtený na 1 coulomb, tj. třeba 6 J/C, což je ve
voltech 6V. Je to "elektrické napětí" mezi těmito dvěma místy pole.
I zde charakterizuje elektrické napětí ROZDÍL STAVŮ mezi dvěma místy
elektrického pole. (Svým žákům vždycky říkám, že když ukazují na
nějaké napětí, potřebují k tomu dva prsty, aby ukázali ta dvě místa)
Nic "molekulárního" si tomu představit opět nedovedu, to co jsem
popsal platí i když je to elektrické pole ve vakuu. To napětí mezi
dvěma místy vodiče se dá vytvořit různé, připojením článku, pohybem
magnetu v okolí, atd.
Ke 2. otázce: Co znamená opačná fáze napětí na vstupu a výstupu zesilovače?
Opět to zkusím s mechanickou analogií.
Představte si spojitou nádobu tvaru písmene U s vodou,
kde pravé rameno bude mít velký průřez a levé malý, něco jako
kropicí konev. Když pustím do konve nějaký "vstupní signál" - v
širokém rameni budu například pajtlovat pístem 1 cm dolů a 1 cm
nahoru od rovnovážné polohy, bude "mechanické napětí" mezi
rovnovážnou polohou a okamžitou polohou kmitat od 0 J/kg do -0,1
J/kg (píst dole) k 0 J/kg (píst při návratu uprostřed) až k +0,1
J/kg (píst nahoře). V sousední úzké rouře (tj. "výstup zesilovače"
dejme tomu s plochou průřezu 10krát menší) bude voda kmitat 10 cm
nahoru a 10 cm dolů, tj. s vyšším napětím , které bude kolísat
nejdřív nahoru od 0 J/kg k + 1 J/kg , potom přes nulu dolů k -1
J/kg atd. Tento zesilovač pracuje s desetinásobným zesílením,
vstupní signál má opačnou fázi než výstupní (když jde píst v konvi
dolů, stoupá hladina v úzké rouře nahoru a obráceně). Co je vstup, plyne ze znalosti českého jazyka. Vstupem může např. být napětí z
mikrofonu, které přivádím na vstupní svorky zesilovače, výstup je
napětí, které ze zesilovače přivádím třeba na svorky reproduktorů.
Ke 3. otázce: Jak si představit střídavý proud?
Do třetice s mechanickým modelem.
V hadici, ve které jsou oba konce napojeny na vstup a výstup čerpadla,
proudí voda stejnosměrně kolem dokola.
Teď elektromotorek toho čerpadla budu krmit tak,
aby chvíli čerpalo zleva doprava a potom zprava doleva.
Vodní proud poteče chvilku doleva, chvilku doprava. Proud bude
střídavý, ovšem ne sinusový ale zhruba obdélníkového průběhu.
Sinusový průběh vodního proudu bychom mohli v této trubici docílit
třeba tak, že bychom čerpadlo odstranili, konce propojili a po kusu
hadice jezdili sem tam sinusově (jako při kývání kyvadla) válečkem
na nudle. Z mikrofyzikálního pohledu (opět velmi primitivního) na
elektrický proud doplňuji, co už jednou v Odpovědně zaznělo.
Opakuji: "Nositele nábojů ve vodičích, tj. elektrony v kovech, ionty v
kapalinách a plynech a elektrony a "díry" v polovodičích opravdu
cestují, jak je elektrické pole žene, !!!!kolem dokola!!! v uzavřeném
obvodu (odstartují najednou). Samozřejmě po sepnutí obvodu se
nechovají jako účastníci májového průvodu, kteří udělají vpravo vbok
a jdou ukázněně směrem, kterým je žene pole, ale spíše tak jak
naznačuji svým žákům modelem:
Nositelé nábojů představují hemžící se
mravence v mraveništi, kde vytvořím pachové pole tím, že na jednu
stravu mraveniště dám lákavý med a na druhou něco smradlavého (otevřu
tam třeba lahvičku se čpavkem). Tím mezi těmito dvěma body bude "smradové
napětí".
Díky smradovému poli hemžení neustane, nebude ale zcela
souměrně chaotické (středová rychlost nebude 0), ale bude trošičku převládat
směr rychlosti mravenců k medu. Kam pocestují, tj. jaký je směr proudu, když
smradové pole vyměním, je snad jasné. Samozřejmě mohu to smradové pole střídat
a proud mravenců pak bude střídavý."
Ve vodiči je to chaotické hemžení částic - nosičů náboje velmi velkou
rychlostí, závislou na teplotě, ta usměrněná rychlost (složka rychlosti)
je ve srovnání s tím strašně prťavá, závislá pro daný vodič mj. na napětí
mezi jeho konci.
Dotaz: Zajímala by mně odpověď na následující otázku: kovová trubice je naplněna rtutí,
a mechanicky ucpána zátkami. Ve rtuti je el. spirála, příp. jiný zdroj
tepla. Trubice je ponořena ve vodě. Při průtoku proudu dojde k zahřátí rtuti a tím jejímu roztažení.Zajímalo by mne, zda je voda schopna odvést vzniklé teplo, nebo dojde k mechanické destrukci trubice. Za odpověď na tento, možná kostrbatý
dotaz, předem děkuji. (Luboš)
Odpověď: Tak jak je to popsáno, došlo by ke zkratu, protože rtuť je dobrý
vodič elektrického proudu. Pokud by byla topná spirála v nevodivém
pouzdře a zahřívaná rtuť byla ve skleněném pouzdře (špatném
vodiči tepla s malou tepelnou roztažností), sklo by prasklo. Pokud by
rtuť byla v pouzdru dobře tepelně vodivém, voda by to stačila chladit
a navíc i pouzdro by se teplem poněkud roztáhlo.
Stručně řečeno, výsledek bude záviset na tom, z čeho bude futrál.