Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 40 dotazů obsahujících »elektronu«
4) Kolaps vlnové funkce
08. 08. 2008
Dotaz: Dobrý den, měl bych totaz týkající se vlnové funkce. Tím, že provedu pozorování, vlnová funkce pozorovaného objektu zkolabuje. Když přestanu pozorovat objekt, řekl bych, už nikdy nebude mít vlnový charakter, nebo ano? Když se podívám na strom a zjistím, že spadl a následně přestanu pozorovat, strom by měl být pořád na zemi. Kdyby byl druhý pozorovatel za horizontem, a spadlý strom neviděl, měl by pro něj pořád vlnový charakter. To znamená, že kolaps funkce je vázán na konkrétního
pozorovatele? (Standa)
Odpověď: Nejprve si trochu ujasněme, co znamená kolaps vlnové funkce při pozorování.
V kvantové fyzice stav objektu i jeho vývoj popisujeme tzv. vlnovou funkcí, ze které lze o objektu všechno zjistit (nese kompletní informaci). Jedná se o komplexní funkci souřadnic a času. (Poznámka: Popis stavu může být i jiný, ale zůstaňme u tohoto přístupu).
Při pozorování, resp. měření nějaké vlastnosti našeho objektu, dojde ke změně vlnové funkce. Zopakujme předchozí větu ještě přesněji: Jakmile uvažujeme (popisujeme či dokonce propočítáváme) chování objektu v situaci, ve které došlo k nějakému měření a získání určité informace o popisovaném objektu (např. určíme polohu elektronu), musíme v okamžiku měření vlnovou funkci popisující vývoj objektu před měřením zaměnit za jinou vlnovou funkci, která bude popisovat jeho vývoj po měření. Navíc tato nová vlnová funkce závisí na tom, co jsme naměřili. Této "změně" vlnové funkce se obvykle říká kolaps nebo redukce vlnové funkce. Závěr tohoto odstavce je tedy, že i po pozorování je daný objekt popsán vlnovou funkcí. A tato funkce závisí na pozorovateli.
Co přesně tato změna vlnové funkce znamená a jaký je její význam, je velkým oříškem. Existuje mnoho konkurenčních teorii (interpretací kvantové mechaniky), které se to snaží vysvětlit. Z praktického hlediska je ale důležité, že máme jasný návod, jak počítat a předpovídat výsledky měření.
Další věcí, kterou by bylo ve vašem dotazu třeba upřesnit, je "vlnový charakter". Zda tím myslíte to, že se daný objekt může chovat podobně jako se chovají vlny např. na vodní hladině nebo zvuk. Podle příkladu se stromem bych ale usuzovala, že pod vlnovým charakterem spíše myslíte existenci smíšených stavů - tj. stavů, ve kterých není daná vlastnost "určena". V příkladu se stromem by to byl strom ve stavu, který by byl kombinací stojícího i ležícího stavu. Problém je, že takové stavy jsou typicky kvantovou záležitostí a ve světě přístupném našim smyslům se s nimi nesetkáváme.
A tím jsme se asi dostali k jádru problému. V kvantové fyzice popisujeme objekty, se kterými nemáme zkušenost. Tyto objekty se chovají diametrálně odlišně od nám známých věcí (kuliček, vozíků, vln, vody, ...) a nám chybějí vhodná slova pro popis jejich chování. Proto si vypomáháme běžnými slovy. To ale s sebou přináší velké riziko, že dojde k nedorozumění či nepochopení. Při slovním popisu je tedy třeba být neustále ve střehu a zvažovat každé slovo a jeho význam. Na druhou stranu máme přesný a propracovaný matematický aparát, pomocí něhož umíme předpovídat výsledky našich měření.
Základy kvantové fyziky včetně rozboru nastíněných problémů jsou velmi kvalitně a přístupně zpracovány např. v knize Tony Hey, Patrick Walters: Nový kvantový vesmír, Argo a Dokořán, Praha, 2005, i v několika dalších.
Dotaz: Dobrý den, chtěl jsem se Vás zeptat proč když přiblížim ke starému
monitoru magnet tak ztmavne? (Petr Lepič)
Odpověď: Starší monitory (resp. monitory typu CRT = Cathode Ray Tube) fungují tak, že "vystřelují" elektrony zezadu/zevnitř na obrazovku. Na její vnitřní straně je nanesena vrstva luminoforu - sloučeniny, která při dopadu elektronu zasvítí. Kam na obrazovku se takto "vystřelené" elektrony trefí a jaké body následně budou na obrazovce svítit, to je určováno pomocí cívek (elektromagnetů) uvnitř monitoru. Letící elektron je pohybující se elektrický náboj a je tedy v magnetickém poli vychylován ze své dráhy tzv. Lorentzovou silou. Vykreslení obrazu je tedy prováděno změnou napětí přiváděného na cívky uvnitř monitoru.
Jestliže k takovémo monitoru přiblížíme libovolný další magnet, dojde k narušení (pozměnění) magnetického pole a v důsledku toho bude vykreslovaný obraz různě deformován. Mohou tak vznikat i místa, kam se žádné elektrony v důsledku deformace magnetického pole nedostanou - a ta budou tmavá.
Další informace o fungování monitoru typu CRT najdete na
Dotaz: Dobrý den, nejdrív bych chtel pochválit tento web. Nasel jsem tu spoustu odpovedí. A ted otázka: Zajímalo by me co zbyde po interferenci dvou fotonu s opacnou fází. Je mozné ze se uplne vyrusí jako vlny na hladine vody? A jak je to s interferencí cástic? Napríklad elektronu. Myslím si, ze by po nich mela zustat alespon nejaká forma energie, ale to vlastne i po fotonech vzhledem k jejich duálnímu charakteru. A jeste jedna otázka: Jakto ze pri anihilaci cástice a anticástice se uvolní energie? Kdyz princip neurcitosti umoznuje vzniknout cásticím s kladnou energií a anticásticím se zápornou energií.Mozná jsem to jen spatne pochopil. Dekuji za vysvetlení. Rád si o tom neco prectu pokud mi doporucíte literaturu. (Tomáš)
Odpověď: Co se týče interference, jde o vlnovou záležitost a tak je potřeba se na věc dívat trochu jinak (ne jako na částice, ketré v daném místě zmizí). Správnější je tedy představa, že zatímco na jednom místě se v důsledku interference projev přítomnosti fotonů/částic vyruší, nutně se zase jinde, o kousek dál, v důsledku téže interference konstruktivně sečte a tedy zesílí. Nejde tedy o nějaké mizení energie, ale o její prostorové přeuspořádání.
Nyní k anihilaci - všechny částice i antičástice mají vždy kladnou hmotnost a tedy i energii, při anihilaci tedy dochází opět pouze ke změně formy hmoty/energie. Při řešení rovnic (Diracova, Kleinova-Gordonova) skutečně může vycházet, že některé částice mají zápornou energii, tuto skutečnost je však potřeba interpretovat poněkud jinak, t.j. že mají kladnou energii, ale opačný náboj - jedná se tedy o antičástice (s kladnou energií).
Dotaz: Dobrý den, mám problém s příkladem z kvantové fyziky. Vím, že to není
náplní Vašeho webu, ale prosím Vás moc o pomoc, co s tím?: Prahová
vlnová délka pro fotoelektrickou emisi u wolframu je 230nm. Jaká musí být
vlnová délka použitého světla, aby vyletovaly elektrony s maximální
energií 1,5 eV? (Market)
Odpověď: Při fotoelektrickém jevu (též fotoefektu) dopadají fotony na povrch materálu a předávají svou energii elektronům. Část této energie je třeba k samotnému vytržení elektronu z povrchu materiálu (tzv. výstupní práce), zbytek se pak může využít k urychlení elektronu, tj. pro kinetickou enerhii elektronu.
Je-li výstupní práce elektronu u wolframu ekvivalentní energii fotonu o vlnové délce 230 nm (tedy asi 5,4 eV), pak tedy stačí zjistit, jaká vlnová délka odpovída světlu o energii fotonů E = 6,9 (=5,4+1,5) eV. Vyjde nám pak světlo o vlnové délce zhruba 180 nm.
Více se o fotoelektrickém jevu můžete dočist například na:
Dotaz: V kvantové fyzice jsou 2 veličiny kompatibilní, když je lze současně měřit. To
platí, když operátory těchto veličin mají společné vlastní stavy a jejich
komutátor je roven nule. Pro kombinaci poloha-hybnost nebo energie-čas je to
jasné, ty jsou ve všechn učebnicích rozebrány. Ale co kombinace poloha-energie?
Jejich komutátor je nulový, tak by měly mít stejné vlastní stavy. Ale vlastní
stavy energie elektronu v atomu (takové ty tvary orbitalů - koule, prostorové
osmičky, atd) nejsou vlastní stavy operátoru polohy (to by měl být jen jeden bod
v prostoru). Možná je problém v tom, že operátor polohy komutuje s obecným
operátorem energie, ale ne s Hamiltoniánem, který popisuje energii elektronu v
obalu atomu. Znamená to, že poloha-energie někdy komutují a někdy ne? (Petr Plachý)
Odpověď: Máte pravdu v tom, že když dva operátory komutují (jejich komutátor je roven nule), existuje společný systém vlastních stavů a jim příslušející veličiny lze změřit současně.
Operátory souřadnice a hybnosti nekomutují, proto neexistují jejich společné vlastní stavy a nelze je změřit současně (s libovolnou přesností). To popisují tzv. Heisenbergovy relace neurčitosti. Podobnou nerovnost lze napsat i pro dvojici energie a čas, ale zde je třeba být opatrnější. V nerelativistické kvantové mechanice je čas parametrem (pro popis vývoje systému) a nezavádí se operátor času. I když lze podobnou nerovnost psát, musíme být při jejím odvození i interpretaci velmi opatrní. Podrobnější diskuzi s odkazy na další materiály lze najít v anglické Wikipedii:
K vašemu dotazu ohledně dvojice souřadnice-energie. Přiznám se, že nerozumím tomu, čemu říkáte "obecný operátor energie". Operátorem celkové energie je Hamiltonův operátor. Jedná se asi o jedinou výjimku, kdy se operátor jmenuje jinak a i značí jiným písmenem než jemu příslušející veličina.
Celková energie je součtem kinetické a potenciální energie. V našem případě bude operátor celkové energie (již zmíněný Hamiltonův operátor) součtem operátoru kinetické energie a operátoru potenciální energie.
Potenciální energie závisí na zkoumaném problému (např. pro zmíněný výpočet atomu vodíku se jedná o potenciální energii elektronu v elektrostatickém poli jádra) a (většinou) je závislá pouze na souřadnici a nezávislá na hybnosti. Proto operátor potenciální energie (obvykle) s operátorem souřadnice komutuje. Kinetická energie je vždy úměrná druhé mocnině hybnosti. Z tohoto důvodu operátor kinetické energie s operátorem souřadnice nekomutuje:
Díky tomu ani celková energie nekomutuje s operátorem souřadnice, a proto neexistují společné vlastní funkce těchto dvou operátorů.