Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 40 dotazů obsahujících »elektronu«
5) Magnet a monitory CRT
24. 07. 2008
Dotaz: Dobrý den, chtěl jsem se Vás zeptat proč když přiblížim ke starému
monitoru magnet tak ztmavne? (Petr Lepič)
Odpověď: Starší monitory (resp. monitory typu CRT = Cathode Ray Tube) fungují tak, že "vystřelují" elektrony zezadu/zevnitř na obrazovku. Na její vnitřní straně je nanesena vrstva luminoforu - sloučeniny, která při dopadu elektronu zasvítí. Kam na obrazovku se takto "vystřelené" elektrony trefí a jaké body následně budou na obrazovce svítit, to je určováno pomocí cívek (elektromagnetů) uvnitř monitoru. Letící elektron je pohybující se elektrický náboj a je tedy v magnetickém poli vychylován ze své dráhy tzv. Lorentzovou silou. Vykreslení obrazu je tedy prováděno změnou napětí přiváděného na cívky uvnitř monitoru.
Jestliže k takovémo monitoru přiblížíme libovolný další magnet, dojde k narušení (pozměnění) magnetického pole a v důsledku toho bude vykreslovaný obraz různě deformován. Mohou tak vznikat i místa, kam se žádné elektrony v důsledku deformace magnetického pole nedostanou - a ta budou tmavá.
Další informace o fungování monitoru typu CRT najdete na
Dotaz: Dobrý den, nejdrív bych chtel pochválit tento web. Nasel jsem tu spoustu odpovedí. A ted otázka: Zajímalo by me co zbyde po interferenci dvou fotonu s opacnou fází. Je mozné ze se uplne vyrusí jako vlny na hladine vody? A jak je to s interferencí cástic? Napríklad elektronu. Myslím si, ze by po nich mela zustat alespon nejaká forma energie, ale to vlastne i po fotonech vzhledem k jejich duálnímu charakteru. A jeste jedna otázka: Jakto ze pri anihilaci cástice a anticástice se uvolní energie? Kdyz princip neurcitosti umoznuje vzniknout cásticím s kladnou energií a anticásticím se zápornou energií.Mozná jsem to jen spatne pochopil. Dekuji za vysvetlení. Rád si o tom neco prectu pokud mi doporucíte literaturu. (Tomáš)
Odpověď: Co se týče interference, jde o vlnovou záležitost a tak je potřeba se na věc dívat trochu jinak (ne jako na částice, ketré v daném místě zmizí). Správnější je tedy představa, že zatímco na jednom místě se v důsledku interference projev přítomnosti fotonů/částic vyruší, nutně se zase jinde, o kousek dál, v důsledku téže interference konstruktivně sečte a tedy zesílí. Nejde tedy o nějaké mizení energie, ale o její prostorové přeuspořádání.
Nyní k anihilaci - všechny částice i antičástice mají vždy kladnou hmotnost a tedy i energii, při anihilaci tedy dochází opět pouze ke změně formy hmoty/energie. Při řešení rovnic (Diracova, Kleinova-Gordonova) skutečně může vycházet, že některé částice mají zápornou energii, tuto skutečnost je však potřeba interpretovat poněkud jinak, t.j. že mají kladnou energii, ale opačný náboj - jedná se tedy o antičástice (s kladnou energií).
Dotaz: Dobrý den, mám problém s příkladem z kvantové fyziky. Vím, že to není
náplní Vašeho webu, ale prosím Vás moc o pomoc, co s tím?: Prahová
vlnová délka pro fotoelektrickou emisi u wolframu je 230nm. Jaká musí být
vlnová délka použitého světla, aby vyletovaly elektrony s maximální
energií 1,5 eV? (Market)
Odpověď: Při fotoelektrickém jevu (též fotoefektu) dopadají fotony na povrch materálu a předávají svou energii elektronům. Část této energie je třeba k samotnému vytržení elektronu z povrchu materiálu (tzv. výstupní práce), zbytek se pak může využít k urychlení elektronu, tj. pro kinetickou enerhii elektronu.
Je-li výstupní práce elektronu u wolframu ekvivalentní energii fotonu o vlnové délce 230 nm (tedy asi 5,4 eV), pak tedy stačí zjistit, jaká vlnová délka odpovída světlu o energii fotonů E = 6,9 (=5,4+1,5) eV. Vyjde nám pak světlo o vlnové délce zhruba 180 nm.
Více se o fotoelektrickém jevu můžete dočist například na:
Dotaz: V kvantové fyzice jsou 2 veličiny kompatibilní, když je lze současně měřit. To
platí, když operátory těchto veličin mají společné vlastní stavy a jejich
komutátor je roven nule. Pro kombinaci poloha-hybnost nebo energie-čas je to
jasné, ty jsou ve všechn učebnicích rozebrány. Ale co kombinace poloha-energie?
Jejich komutátor je nulový, tak by měly mít stejné vlastní stavy. Ale vlastní
stavy energie elektronu v atomu (takové ty tvary orbitalů - koule, prostorové
osmičky, atd) nejsou vlastní stavy operátoru polohy (to by měl být jen jeden bod
v prostoru). Možná je problém v tom, že operátor polohy komutuje s obecným
operátorem energie, ale ne s Hamiltoniánem, který popisuje energii elektronu v
obalu atomu. Znamená to, že poloha-energie někdy komutují a někdy ne? (Petr Plachý)
Odpověď: Máte pravdu v tom, že když dva operátory komutují (jejich komutátor je roven nule), existuje společný systém vlastních stavů a jim příslušející veličiny lze změřit současně.
Operátory souřadnice a hybnosti nekomutují, proto neexistují jejich společné vlastní stavy a nelze je změřit současně (s libovolnou přesností). To popisují tzv. Heisenbergovy relace neurčitosti. Podobnou nerovnost lze napsat i pro dvojici energie a čas, ale zde je třeba být opatrnější. V nerelativistické kvantové mechanice je čas parametrem (pro popis vývoje systému) a nezavádí se operátor času. I když lze podobnou nerovnost psát, musíme být při jejím odvození i interpretaci velmi opatrní. Podrobnější diskuzi s odkazy na další materiály lze najít v anglické Wikipedii:
K vašemu dotazu ohledně dvojice souřadnice-energie. Přiznám se, že nerozumím tomu, čemu říkáte "obecný operátor energie". Operátorem celkové energie je Hamiltonův operátor. Jedná se asi o jedinou výjimku, kdy se operátor jmenuje jinak a i značí jiným písmenem než jemu příslušející veličina.
Celková energie je součtem kinetické a potenciální energie. V našem případě bude operátor celkové energie (již zmíněný Hamiltonův operátor) součtem operátoru kinetické energie a operátoru potenciální energie.
Potenciální energie závisí na zkoumaném problému (např. pro zmíněný výpočet atomu vodíku se jedná o potenciální energii elektronu v elektrostatickém poli jádra) a (většinou) je závislá pouze na souřadnici a nezávislá na hybnosti. Proto operátor potenciální energie (obvykle) s operátorem souřadnice komutuje. Kinetická energie je vždy úměrná druhé mocnině hybnosti. Z tohoto důvodu operátor kinetické energie s operátorem souřadnice nekomutuje:
Díky tomu ani celková energie nekomutuje s operátorem souřadnice, a proto neexistují společné vlastní funkce těchto dvou operátorů.
Dotaz: Dobrý den, chtěl bych se zeptat, jestli je spektrum deuteria shodné se spektrem
vodíku, konkrétně by mě zajímala Balmerova série vodíku. Děkuji (Michal Kamas)
Odpověď: Předpokládám, že vodíkem myslíte tzv. lehký vodík 1H
(nejběžnější v přírodě) a chcete srovnávat jeho spektrum s deuteriem
neboli tzv. těžkým vodíkem 2H. Každá čára ve spektru atomu
(libovolného) odpovídá přechodu elektronu z jednoho povoleného stavu do
jiného, který má menší energii. Energie (a tedy i frekvence) vyzářeného
fotonu odpovídá rozdílu energií obou hladin.
Při kvantově-mechanickém výpočtu povolených stavů a jejich energií pro
elektron, který se nachází v elektrickém poli bodového náboje (jádra) lze
předpokládat, že jádro má nekonečnou hmotnost (hmotnost protonu je asi
2000-krát větší než hmotnost elektronu, stejný poměr jako ping-pongovým
míčkem a středně velkým melounem). Při tomto zanedbání se výpočet
energetických hladin pro vodík a deuterium neliší a i spektra by byla
přesně stejná.
Pokud chceme provést výpočet přesněji - tj. nebudeme předpokládat
nekonečně těžké (což je ekvivalentní „nehybnému“) jádro,
řešíme problém dvou těles, který se jednoduše dá převést na předchozí
případ (tj. případ elektronu v poli nekonečně těžkého jádra) a jediná
změna nastane v tom, že nebudeme počítat s hmotností elektronu, ale s tzv.
redukovanou hmotností, která se spočítá ze vzorce
μ = memj / (me + mj).
Dosazením za hmotnost elektronu a příslušného jádra zjistíte, že se
redukované hmotnosti pro lehký vodík a deuterium se liší asi o čtvrtinu
promile. Protože energie povoleného stavu je úměrná hmotnosti, budou se
povolené energetické hladiny a tedy i čáry ve spektru lehkého vodíku a
deuteria lišit také o zlomky promile.