FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 27 dotazů obsahujících »fotonů«

1) Energie fotonů11. 10. 2012

Dotaz:

Dobrý den, chtěla bych se zeptat, jaká je energie fotonů? Mám za to, že aby se mohly pohybovat rychlostí světla, musí mít nulovou hmotnost. Když si ale tuto nulu dosadím do vzorce E=mc2, energie mi vyjde nulová, což podle mě není správně. Děkuji

(Petra)

Odpověď:

Dobrý den,

Max Planck dal základ myšlence, že energie elektromagnetického záření (světla) je tzv. kvantována. Daným kvantům (jakýmsi balíčkům energie) říkáme fotony. Jejich energii lze vyjádřit vzorcem E=hf, kde f je frekvence vlnění ( v případě světla souvisí frekvence s jeho barvou) a h je Planckova konstanta. Čili pokud se ptáte na energii fotonů, musíte specifikovat jakou frekvenci mají. Dle uvedeného vzorce platí, že čím větší frekvence, tím větší energie.

Vzoreček, který uvádíte, se v tomto případě (jak naznačujete) použít nedá. Abychom toto odůvodnili, musíme se mu trochu "podívat na kloub."

Vztah E= mc2 vyjadřuje celkovou relativistickou energii tělesa. Pozor ale na veličinu m, ta sice značí hmotnost, avšak hmotnost relativistickou a ta závisí na rychlosti vztahem

,

kde m0 značí tzv. klidovou hmotnost, čili hmotnost v klidové soustavě, tu "naší", kterou dobře známe. Jak tedy vypadá m pro případ foton? Jak správně píšete, klidová hmotnost fotonů je nula, rychlost fotonů v = c, čili ve výrazu definujícím m získáváme podíl typu "nula lomeno nulou". Tomu říkáme neurčitý výraz a proto tento vztah nelze použít.

(Michal Kloc)   >>>  

2) Energie při anihilaci a interferenci06. 05. 2008

Dotaz: Dobrý den, nejdrív bych chtel pochválit tento web. Nasel jsem tu spoustu odpovedí. A ted otázka: Zajímalo by me co zbyde po interferenci dvou fotonu s opacnou fází. Je mozné ze se uplne vyrusí jako vlny na hladine vody? A jak je to s interferencí cástic? Napríklad elektronu. Myslím si, ze by po nich mela zustat alespon nejaká forma energie, ale to vlastne i po fotonech vzhledem k jejich duálnímu charakteru. A jeste jedna otázka: Jakto ze pri anihilaci cástice a anticástice se uvolní energie? Kdyz princip neurcitosti umoznuje vzniknout cásticím s kladnou energií a anticásticím se zápornou energií.Mozná jsem to jen spatne pochopil. Dekuji za vysvetlení. Rád si o tom neco prectu pokud mi doporucíte literaturu. (Tomáš)

Odpověď: Co se týče interference, jde o vlnovou záležitost a tak je potřeba se na věc dívat trochu jinak (ne jako na částice, ketré v daném místě zmizí). Správnější je tedy představa, že zatímco na jednom místě se v důsledku interference projev přítomnosti fotonů/částic vyruší, nutně se zase jinde, o kousek dál, v důsledku téže interference konstruktivně sečte a tedy zesílí. Nejde tedy o nějaké mizení energie, ale o její prostorové přeuspořádání.

Nyní k anihilaci - všechny částice i antičástice mají vždy kladnou hmotnost a tedy i energii, při anihilaci tedy dochází opět pouze ke změně formy hmoty/energie. Při řešení rovnic (Diracova, Kleinova-Gordonova) skutečně může vycházet, že některé částice mají zápornou energii, tuto skutečnost je však potřeba interpretovat poněkud jinak, t.j. že mají kladnou energii, ale opačný náboj - jedná se tedy o antičástice (s kladnou energií).

(Jakub Jermář)   >>>  

3) Fotoelektrický jev16. 04. 2008

Dotaz: Dobrý den, mám problém s příkladem z kvantové fyziky. Vím, že to není náplní Vašeho webu, ale prosím Vás moc o pomoc, co s tím?: Prahová vlnová délka pro fotoelektrickou emisi u wolframu je 230nm. Jaká musí být vlnová délka použitého světla, aby vyletovaly elektrony s maximální energií 1,5 eV? (Market)

Odpověď: Při fotoelektrickém jevu (též fotoefektu) dopadají fotony na povrch materálu a předávají svou energii elektronům. Část této energie je třeba k samotnému vytržení elektronu z povrchu materiálu (tzv. výstupní práce), zbytek se pak může využít k urychlení elektronu, tj. pro kinetickou enerhii elektronu.

Je-li výstupní práce elektronu u wolframu ekvivalentní energii fotonu o vlnové délce 230 nm (tedy asi 5,4 eV), pak tedy stačí zjistit, jaká vlnová délka odpovída světlu o energii fotonů E = 6,9 (=5,4+1,5) eV. Vyjde nám pak světlo o vlnové délce zhruba 180 nm.

Více se o fotoelektrickém jevu můžete dočist například na:
(Jakub Jermář)   >>>  

4) Absorbční a emisní čáry12. 03. 2008

Dotaz: Atom z procházejícího záření absorbuje určitou vlnovou délku, tím se vybudí a po chvílí sám vyzáří odpovídající kvantum. Jaktože tedy v procházejícím světle pozorujeme tedy absorpční čáry? (Boris Rychta)

Odpověď: Správně jste poznamenal, že zatímco ostatní vlnové délky procházejí, některé atom pohlcuje, čímž přechází do bvyššího energetického stavu. Ten je méně stabilní, takže po nějakém čase (obvykle dosti krátkém) se atom zase "vybije" - přejde do svého původního stabilnějšího stavu tak, že se zbaví přebytečné energie vyzářením světla/fotonu dané vlnové délky (pomiňme nyní možnost, že by existoval metastabilní mezistav a bylo postupně vyzářeno více méněenergetických fotonů), ovšem ne nutně v původním směru. Ve směru prozařování vzorku (plynu, mlhoviny, ...) tedy prochází méně světla daných délek. V ostatních směrech pak můžeme na téže vlnové délce pozorovat naopak emisní čáry.

(Jakub Jermář)   >>>  

5) Energie fotonů29. 01. 2007

Dotaz: Dobrý den, chtěla jsme se zeptat: Foton, kterého světla má větší energii? Modrého nebo červeného? (Libuše Weinerová)

Odpověď: Energie fotonu je přímo úměrná frekvenci (a tím pádem nepřímo úměrná vlnové délce), přičemž konstanta této přímé úměrnosti se nazývá Planckova konstanta (h = 6,626 176·10-34 J·s) a je jednou ze fundamentálních konstant ve fyzice vůbec. Energie modrého světla (s frekvencí okolo 6,5·1014 Hz) je tedy zhruba o polovinu vyšší než energie světla červeného (s frekvencí okolo 4,5·1014 Hz).

(Jakub Jermář)   >>>