Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 27 dotazů obsahujících »fotonů«
12) Geiger-Müllerovy trubice
23. 11. 2003
Dotaz: Při studiu parametrů Geiger-Müllerových trubic jsem narazil na následující
věc. Detektory jsou vyráběny v několika základních variantách (lišících se
schopností detekce různých druhů záření, čehož je dosaženo propustností
materiálu stěny detektoru případně zabudováním slídového okénka atp.). Jedna
z variant jsou tzv. energeticky kompenzované GM trubice. Nevím co to znamená,
jde však o něco jiného než o citlivost ke konkrétnímu druhu záření (dělají se
s okénkem i bez). Mám na to hypotézu: Četnost impulzů generovaných trubicí je
úměrná počtu vlétnuvších fotonů gama za čas. Ukazatel detektoru je obvykle
cejchován v Gr/hod (nebo Sv/hod). Měřený tok (Gr/hod) je dle definice (je to
vlastně fyzikálně výkon) závislí nejen na hustotě částic (četnosti impulzů),
ale i na vlnové délce (energii) fotonů. Myslím si, že kompenzací trubice (asi
stíněním, absorbujícím více fotony s menší energií) je odstraněna závislost
měřeného toku (Gr/hod) na vlnové délce, tz. úmyslně vytvořená závislost
četnosti impulzů na vlnové délce. Je to tak, nebo jsem zcela vedle? (Petr Štěpánek)
Odpověď: Nejste vůbec vedle, skutečně jde o kompenzaci odezvy na gama, která se snaží
korigovat fakt, ze účinný průřez absorbce gama při malých energiích silně klesá (viz
například str. 18 v
http://pdg.lbl.gov/2002/passagerpp.pdf), přičemž navíc
závisí na materiálu stěny, kde většinou ke konverzi gama-fotoelektron
dochází, účinný průřez fotoefektu závisí na Z5! Tj. chcete-li
například měřit gama pro účely radiační ochrany, měla by odezva GM odpovídat
absorbované energii gama v našich tělech, která mají nejblíže k vodě,
viz pěkný článek o detektorech
http://www.cs.nsw.gov.au/rpa/pet/RadTraining/IonisationDetectors.htm
Nejsem ale expert, nevím, jak je to přesně uděláno.
Dotaz: Je v černé díře, tedy v onom zvláštním místě vesmíru (pokud skutečně existuje)
skutečně díra- otvor?Je-li, co je v tomto v tomto prostoru?Podle toho, co
jsem dosud četl, by gravitace v takovém místě spíše znamenala "absolutní"
koncentraci hmoty. Není tedy černá díra spíše černý bod?Děkuji za odpověď (Pavel Dombrovský)
Odpověď: Vysoká koncentrace hmoty v černé díře může vyvolat tak velké
zakřivení prostoročasu, že se jeho část jako by uzavře a oddělí od
zbytku, takže "zevnitř" nemůže žádný případný pozorovatel vyslat
signál, který by dosáhl vnějšího pozorovatele a zprostředkoval mu jakoukoli
zprávu. (Pohyb světelných fotonů rovněž podléhá vlivu gravitace.)
Nicméně obrácený směr pohybu hmoty možný je - černá díra je obklopena
horizontem, který se chová jako jednocestná membrána. Hmota padající
dovnitř končí v singularitě, kterou si vskutku lze v jistém pohledu
představit jako bod (i když ani to není přesné). V černé díře je však
tato singularita obklopena zmíněným horizontem, a ten představuje
hranici černé díry pro vnějšího pozorovatele.
Dotaz: Čím je daná frekvence fotonu emitujícího se z elektronu jako kvantum
elektromagnetického pole? Myslím tím rozdílnost frekvence různých typů
elektromagnetického záření. (Jindřich Gubiš)
Odpověď:
Frekvence fotonu je daná podmínkami, za kterých elektron vyzařuje. Je to jako
heknutí, když se s vámi něco stane. Když elektron v kvantovém systému
seskočí z jednoho energetického stavu na nižší, vyšle gama kvantum (foton)
s energií odpovídající rozdílu energií stavů ("hekne" s vyšší frekvencí,
když to byl vyšší skok). Když elektron kmitá v anténě mobilu, vysílá
elektromagnetické vlny (tady se moc nemluví o fotonech, protože je jich
moc) s frekvencí toho kmitání ("heká" jak se obrací tam a zpět..).
Dotaz: Reaguji tímto na dotaz "Modrá zářivka". Možná se mýlím, ale
nepřipadá mi, že by tato zářivka nějak intenzivně zářila v UV oblasti. UV
záření se prozradí intenzivní vůní ozónu (zkuste si to s "horským sluníčkem",
nebo i s EPROM eraserem, který má výkon okolo 1 W). I tyto "modré" zářivky
jsou plněny rtuťovými parami a žádný ozón u nich cítit není. Možná, že sklo
zářivky zadržuje kromě viditelného světla i tvrdší UV, které je schopno
produkovat ozón. Ionizační energie kyslíku je poměrně vysoká, 13,6 eV, tudíž
bych předpokládal poněkud vyšší energii fotonů vhodných pro výrobu ozónu,
měkké UV na to asi nestačí. Rtuť má ve spektru několik čar v UV, zejména na
2537 A, vznikající přechodem 3P1-> 1S0, ale nemyslím, že tato by byla
zodpovědná za výše dotazovaný efekt. Amatérskými prostředky (CDčkem) jsem
zjistil ve rtuťovém spektru jednu čáru (nebo dvě těsně vedle sebe) téměř
přesně na hranici mezi UV a viditelným světlem (fialovější než fialová
:-).Pokud by existovala silnější čára ve velmi blízké UV oblasti, pak pro
přesun fotonů do viditelného světla by pak možná stačil Comptonův jev. (??) (Slavibor Mělnický)
Odpověď: Myslím, že si sám odpovídáte. Samozřejmě že "ultrafialové světlo" je
široký pojem; pro můj účel stačí cokoli, co má sice dostatečnou
intenzitu pro nějakou tu fluorecsenci, ale přitom už je to natolik mimo
oblast citlivosti oka, že si to neuvědomujeme. A nemusí to být ani tak
"tvrdé", aby to vytvářelo ozon, aby nám to vyrábělo rakovinu kůže apod.
Comptonův efekt to nebude, to si spočítejte z energiových úvah. Ale je
to fluorescence - molekula nebo jiná mikrostruktura je jedním UV fotonem
odpovídajícím frekvenci f a nesoucím tedy energii E=hf uvedena do
vzbuzeného stavu s energií E, ale než dojde k přechodu zpátky (a tím
vyzáření fotonu odpovídající frekvence), ztratí molekula vhodným
mechanismem část energie a má tedy energii jen o E1 < E větší než
nenabuzený stav. Vyzářený foton tedy odpovídá světlu s nižší frekvencí f1
= E1/h < f, a už ho proto můžeme vidět.
Dotaz: V knize Richarda Feynmana jsem se dočetl jen tak mimochodem, že se ví, kolik
fotonů pronikne při přechodu např. ze vzduchu do skla, a kolik se odrazí, ale
neví se proč. Ta knížka není nejnovější, už se to ví? A proč? (Otakar Švenda)
Odpověď: Nevím přesně, kterou větu ve které knize máte na mysli, a tak těžko
posoudím, zda jde o básnický obrat, který zdůrazňuje cosi trochu jiného.
Rozhodně nemůžete např. říci, že jistý foton projde, jiný taky, ale
ten další se odrazí. Ale to nemůžete říci hlavně proto, že kvantové
částice (mezi než foton patří) prostě nemají svou individualitu.
Příklad: Můj táta mi poukáže na mé sporožiro ze svého konta 100 Kč,
máma taky. Chci dát sestře stovku, ale ta si vymiňuje, že to musí být ta
matčina a nikoli otcova. To samozřejmě nedává smysl, stokoruna na mém
tisícikorunovém kontě je neodlišitelná od ostatních devíti stokorun, co
jsou tam spolu. Pak ovšem taky nemá smysl přemítání, když každý týden
dostávám dvě stovky a jednu dávám, zda právě příchozí stovka zůstane
nebo "projde" dál.