FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 27 dotazů obsahujících »fotonů«

13) Je černá díra skutečně bod?16. 11. 2003

Dotaz: Je v černé díře, tedy v onom zvláštním místě vesmíru (pokud skutečně existuje) skutečně díra- otvor?Je-li, co je v tomto v tomto prostoru?Podle toho, co jsem dosud četl, by gravitace v takovém místě spíše znamenala "absolutní" koncentraci hmoty. Není tedy černá díra spíše černý bod?Děkuji za odpověď (Pavel Dombrovský)

Odpověď: Vysoká koncentrace hmoty v černé díře může vyvolat tak velké zakřivení prostoročasu, že se jeho část jako by uzavře a oddělí od zbytku, takže "zevnitř" nemůže žádný případný pozorovatel vyslat signál, který by dosáhl vnějšího pozorovatele a zprostředkoval mu jakoukoli zprávu. (Pohyb světelných fotonů rovněž podléhá vlivu gravitace.) Nicméně obrácený směr pohybu hmoty možný je - černá díra je obklopena horizontem, který se chová jako jednocestná membrána. Hmota padající dovnitř končí v singularitě, kterou si vskutku lze v jistém pohledu představit jako bod (i když ani to není přesné). V černé díře je však tato singularita obklopena zmíněným horizontem, a ten představuje hranici černé díry pro vnějšího pozorovatele.
(Doc. RNDr. Vladimír Karas, DrSc.)   >>>  

14) Frekvence fotonu14. 11. 2003

Dotaz: Čím je daná frekvence fotonu emitujícího se z elektronu jako kvantum elektromagnetického pole? Myslím tím rozdílnost frekvence různých typů elektromagnetického záření. (Jindřich Gubiš)

Odpověď: Frekvence fotonu je daná podmínkami, za kterých elektron vyzařuje. Je to jako heknutí, když se s vámi něco stane. Když elektron v kvantovém systému seskočí z jednoho energetického stavu na nižší, vyšle gama kvantum (foton) s energií odpovídající rozdílu energií stavů ("hekne" s vyšší frekvencí, když to byl vyšší skok). Když elektron kmitá v anténě mobilu, vysílá elektromagnetické vlny (tady se moc nemluví o fotonech, protože je jich moc) s frekvencí toho kmitání ("heká" jak se obrací tam a zpět..).
(J.Dolejší)   >>>  

15) "Modrá zářivka" 225. 09. 2003

Dotaz: Reaguji tímto na dotaz "Modrá zářivka". Možná se mýlím, ale nepřipadá mi, že by tato zářivka nějak intenzivně zářila v UV oblasti. UV záření se prozradí intenzivní vůní ozónu (zkuste si to s "horským sluníčkem", nebo i s EPROM eraserem, který má výkon okolo 1 W). I tyto "modré" zářivky jsou plněny rtuťovými parami a žádný ozón u nich cítit není. Možná, že sklo zářivky zadržuje kromě viditelného světla i tvrdší UV, které je schopno produkovat ozón. Ionizační energie kyslíku je poměrně vysoká, 13,6 eV, tudíž bych předpokládal poněkud vyšší energii fotonů vhodných pro výrobu ozónu, měkké UV na to asi nestačí. Rtuť má ve spektru několik čar v UV, zejména na 2537 A, vznikající přechodem 3P1-> 1S0, ale nemyslím, že tato by byla zodpovědná za výše dotazovaný efekt. Amatérskými prostředky (CDčkem) jsem zjistil ve rtuťovém spektru jednu čáru (nebo dvě těsně vedle sebe) téměř přesně na hranici mezi UV a viditelným světlem (fialovější než fialová :-).Pokud by existovala silnější čára ve velmi blízké UV oblasti, pak pro přesun fotonů do viditelného světla by pak možná stačil Comptonův jev. (??) (Slavibor Mělnický)

Odpověď: Myslím, že si sám odpovídáte. Samozřejmě že "ultrafialové světlo" je široký pojem; pro můj účel stačí cokoli, co má sice dostatečnou intenzitu pro nějakou tu fluorecsenci, ale přitom už je to natolik mimo oblast citlivosti oka, že si to neuvědomujeme. A nemusí to být ani tak "tvrdé", aby to vytvářelo ozon, aby nám to vyrábělo rakovinu kůže apod. Comptonův efekt to nebude, to si spočítejte z energiových úvah. Ale je to fluorescence - molekula nebo jiná mikrostruktura je jedním UV fotonem odpovídajícím frekvenci f a nesoucím tedy energii E=hf uvedena do vzbuzeného stavu s energií E, ale než dojde k přechodu zpátky (a tím vyzáření fotonu odpovídající frekvence), ztratí molekula vhodným mechanismem část energie a má tedy energii jen o E1 < E větší než nenabuzený stav. Vyzářený foton tedy odpovídá světlu s nižší frekvencí f1 = E1/h < f, a už ho proto můžeme vidět.
(J.Obdržálek)   >>>  

16) Kolik fotonů projde a kolik se odrazí?10. 06. 2003

Dotaz: V knize Richarda Feynmana jsem se dočetl jen tak mimochodem, že se ví, kolik fotonů pronikne při přechodu např. ze vzduchu do skla, a kolik se odrazí, ale neví se proč. Ta knížka není nejnovější, už se to ví? A proč? (Otakar Švenda)

Odpověď: Nevím přesně, kterou větu ve které knize máte na mysli, a tak těžko posoudím, zda jde o básnický obrat, který zdůrazňuje cosi trochu jiného.
Rozhodně nemůžete např. říci, že jistý foton projde, jiný taky, ale ten další se odrazí. Ale to nemůžete říci hlavně proto, že kvantové částice (mezi než foton patří) prostě nemají svou individualitu.
Příklad: Můj táta mi poukáže na mé sporožiro ze svého konta 100 Kč, máma taky. Chci dát sestře stovku, ale ta si vymiňuje, že to musí být ta matčina a nikoli otcova. To samozřejmě nedává smysl, stokoruna na mém tisícikorunovém kontě je neodlišitelná od ostatních devíti stokorun, co jsou tam spolu. Pak ovšem taky nemá smysl přemítání, když každý týden dostávám dvě stovky a jednu dávám, zda právě příchozí stovka zůstane nebo "projde" dál.
(J.Obdržálek)   >>>  

17) Proč jsou látky průhledné?04. 06. 2003

Dotaz: Dokázal již někdo přijatelně vysvětlit proč jsou některé látky průhledné a průsvitné? Jak procházejí fotony hmotou? Nezdá se mi, že by šlo o postupné předávání vlnění z čelní plochy skrz až na plochu výstupní. Dopadající fotony přece nemají takovou energii, aby dokázaly rozkmitat celou tlošťku a navíc (u látek průhledných) bez zkreslení. Jak to ty fotony dělají? (Pavel Dombrovský)

Odpověď: Vaše formulace se mi zdá být zatížena takovou "materiální" představou fotonů jako kuliček z něčeho zformovaných - třeba střel, které si mají prorazit cestu "nepřátelským územím". Ale tomu tak není. Realitě je stejně blízká představa, že foton je pomluva, která se šíří mezi lidmi - vzruší je (rozkmitá je), oni ji předají dál, a zapomenou na ni. I toto je samozřejmě jen příměr.
Chcete-li hlubší fyzikální obraz, podle kterého by taky šlo něco spočítat, pak nezbyde než sáhnout po nějaké učebnici fyzikální optiky. Z hlediska kvantové teorie je to všecko jednak složitější, jednak jednodušší. Zavádíme tzv. účinný průřez pro to, abychom jednoduše popsali "velikost terče" při interakci (srážce); průběh srážky se počítá kvantově, ale o tom nemá smyslu mluvil takhle "letmo". Taky foton (coby kvantovaná elektromagnetická vlna) v látkovém prostředí je "něco jiného" než foton ve vakuu - v látce se prostě na elektromagnetických kmitech E, B "přiživí" i nabité částice tvořící látku (jádra, elektrony). Proto vychází ustálená rychlost menší než c. Rozbor přechodových jevů je dosti složitý i klasicky (viz např. Stratton: Teorie elektromagnetického pole).
Mimochodem, takové neutrino dokáže proletět Zeměkoulí s velice vysokou pravděpodobností, že se vůbec neodchýlí.
(J.Obdržálek)   >>>