Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 27 dotazů obsahujících »fotonů«
14) Frekvence fotonu
14. 11. 2003
Dotaz: Čím je daná frekvence fotonu emitujícího se z elektronu jako kvantum
elektromagnetického pole? Myslím tím rozdílnost frekvence různých typů
elektromagnetického záření. (Jindřich Gubiš)
Odpověď:
Frekvence fotonu je daná podmínkami, za kterých elektron vyzařuje. Je to jako
heknutí, když se s vámi něco stane. Když elektron v kvantovém systému
seskočí z jednoho energetického stavu na nižší, vyšle gama kvantum (foton)
s energií odpovídající rozdílu energií stavů ("hekne" s vyšší frekvencí,
když to byl vyšší skok). Když elektron kmitá v anténě mobilu, vysílá
elektromagnetické vlny (tady se moc nemluví o fotonech, protože je jich
moc) s frekvencí toho kmitání ("heká" jak se obrací tam a zpět..).
Dotaz: Reaguji tímto na dotaz "Modrá zářivka". Možná se mýlím, ale
nepřipadá mi, že by tato zářivka nějak intenzivně zářila v UV oblasti. UV
záření se prozradí intenzivní vůní ozónu (zkuste si to s "horským sluníčkem",
nebo i s EPROM eraserem, který má výkon okolo 1 W). I tyto "modré" zářivky
jsou plněny rtuťovými parami a žádný ozón u nich cítit není. Možná, že sklo
zářivky zadržuje kromě viditelného světla i tvrdší UV, které je schopno
produkovat ozón. Ionizační energie kyslíku je poměrně vysoká, 13,6 eV, tudíž
bych předpokládal poněkud vyšší energii fotonů vhodných pro výrobu ozónu,
měkké UV na to asi nestačí. Rtuť má ve spektru několik čar v UV, zejména na
2537 A, vznikající přechodem 3P1-> 1S0, ale nemyslím, že tato by byla
zodpovědná za výše dotazovaný efekt. Amatérskými prostředky (CDčkem) jsem
zjistil ve rtuťovém spektru jednu čáru (nebo dvě těsně vedle sebe) téměř
přesně na hranici mezi UV a viditelným světlem (fialovější než fialová
:-).Pokud by existovala silnější čára ve velmi blízké UV oblasti, pak pro
přesun fotonů do viditelného světla by pak možná stačil Comptonův jev. (??) (Slavibor Mělnický)
Odpověď: Myslím, že si sám odpovídáte. Samozřejmě že "ultrafialové světlo" je
široký pojem; pro můj účel stačí cokoli, co má sice dostatečnou
intenzitu pro nějakou tu fluorecsenci, ale přitom už je to natolik mimo
oblast citlivosti oka, že si to neuvědomujeme. A nemusí to být ani tak
"tvrdé", aby to vytvářelo ozon, aby nám to vyrábělo rakovinu kůže apod.
Comptonův efekt to nebude, to si spočítejte z energiových úvah. Ale je
to fluorescence - molekula nebo jiná mikrostruktura je jedním UV fotonem
odpovídajícím frekvenci f a nesoucím tedy energii E=hf uvedena do
vzbuzeného stavu s energií E, ale než dojde k přechodu zpátky (a tím
vyzáření fotonu odpovídající frekvence), ztratí molekula vhodným
mechanismem část energie a má tedy energii jen o E1 < E větší než
nenabuzený stav. Vyzářený foton tedy odpovídá světlu s nižší frekvencí f1
= E1/h < f, a už ho proto můžeme vidět.
Dotaz: V knize Richarda Feynmana jsem se dočetl jen tak mimochodem, že se ví, kolik
fotonů pronikne při přechodu např. ze vzduchu do skla, a kolik se odrazí, ale
neví se proč. Ta knížka není nejnovější, už se to ví? A proč? (Otakar Švenda)
Odpověď: Nevím přesně, kterou větu ve které knize máte na mysli, a tak těžko
posoudím, zda jde o básnický obrat, který zdůrazňuje cosi trochu jiného.
Rozhodně nemůžete např. říci, že jistý foton projde, jiný taky, ale
ten další se odrazí. Ale to nemůžete říci hlavně proto, že kvantové
částice (mezi než foton patří) prostě nemají svou individualitu.
Příklad: Můj táta mi poukáže na mé sporožiro ze svého konta 100 Kč,
máma taky. Chci dát sestře stovku, ale ta si vymiňuje, že to musí být ta
matčina a nikoli otcova. To samozřejmě nedává smysl, stokoruna na mém
tisícikorunovém kontě je neodlišitelná od ostatních devíti stokorun, co
jsou tam spolu. Pak ovšem taky nemá smysl přemítání, když každý týden
dostávám dvě stovky a jednu dávám, zda právě příchozí stovka zůstane
nebo "projde" dál.
Dotaz: Dokázal již někdo přijatelně vysvětlit proč jsou některé látky průhledné a
průsvitné? Jak procházejí fotony hmotou? Nezdá se mi, že by šlo o postupné
předávání vlnění z čelní plochy skrz až na plochu výstupní. Dopadající fotony
přece nemají takovou energii, aby dokázaly rozkmitat celou tlošťku a navíc (u
látek průhledných) bez zkreslení. Jak to ty fotony dělají? (Pavel Dombrovský)
Odpověď: Vaše formulace se mi zdá být zatížena takovou "materiální"
představou fotonů jako kuliček z něčeho zformovaných - třeba střel, které
si mají prorazit cestu "nepřátelským územím". Ale tomu tak není. Realitě je
stejně blízká představa, že foton je pomluva, která se šíří mezi lidmi -
vzruší je (rozkmitá je), oni ji předají dál, a zapomenou na ni. I toto je
samozřejmě jen příměr.
Chcete-li hlubší fyzikální obraz, podle kterého by taky šlo něco
spočítat, pak nezbyde než sáhnout po nějaké učebnici fyzikální optiky.
Z hlediska kvantové teorie je to všecko jednak složitější, jednak
jednodušší. Zavádíme tzv. účinný průřez pro to, abychom jednoduše popsali
"velikost terče" při interakci (srážce); průběh srážky se počítá kvantově,
ale o tom nemá smyslu mluvil takhle "letmo". Taky foton (coby kvantovaná
elektromagnetická vlna) v látkovém prostředí je "něco jiného" než foton ve
vakuu - v látce se prostě na elektromagnetických kmitech E, B "přiživí" i
nabité částice tvořící látku (jádra, elektrony). Proto vychází ustálená
rychlost menší než c. Rozbor přechodových jevů je dosti složitý i klasicky
(viz např. Stratton: Teorie elektromagnetického pole).
Mimochodem, takové neutrino dokáže proletět Zeměkoulí s velice
vysokou pravděpodobností, že se vůbec neodchýlí.
Dotaz: Docela by mě zajímalo, jak je možné, že vlákno žárovky svítí,
roztavené železo vyzařuje světlo (ale kapalný kov při nižší teplotě ne) atd.
i v naprosté tmě. Kde se tedy "berou" fotony v takových situacích? (Libor Tinka)
Odpověď: Již docela dávná pozorování ukázala, že všechna tělesa (včetně např.
roztaveného kovu) v závislosti na své TEPLOTĚ vyzařují v širokém oboru
vlnových délek, při nižších teplotách spíše na dlouhých vlnových délkách
(naše tělo svítí v infračerveném oboru a proto je pomocí vhodné
technologie - např. termovize - viditelné),
při vyšších teplotách se intenzita zvětšuje a posunuje ke kratším vlnovým
délkám (vlákno žárovky, Slunce). Drobnou komplikaci popisu znamená kvalita
a barva povrchu (černá tělesa lépe pohlcují a stejně tak lépe vyzařují),
proto si fyzici vymysleli dokonalou abstrakci -"absolutně černé těleso".
To je popsáno v mnoha knihách i na webových stránkách (hledejte pojem
v uvozovkách), atomy zahřátého tělesa jsou naexcitované a tu a tam vyšlou
nějaký foton. Nemusí být zahřáté moc, pak ale vysílají hodně málo
energetické fotony, které sice neuvidíte, ale které se dají změřit.
Příkladem takových hodně hubených fotonů jsou fotony reliktního záření,
které odpovídá teplotě jen asi 2,7 K.