Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 27 dotazů obsahujících »fotonů«
17) Proč jsou látky průhledné?
04. 06. 2003
Dotaz: Dokázal již někdo přijatelně vysvětlit proč jsou některé látky průhledné a
průsvitné? Jak procházejí fotony hmotou? Nezdá se mi, že by šlo o postupné
předávání vlnění z čelní plochy skrz až na plochu výstupní. Dopadající fotony
přece nemají takovou energii, aby dokázaly rozkmitat celou tlošťku a navíc (u
látek průhledných) bez zkreslení. Jak to ty fotony dělají? (Pavel Dombrovský)
Odpověď: Vaše formulace se mi zdá být zatížena takovou "materiální"
představou fotonů jako kuliček z něčeho zformovaných - třeba střel, které
si mají prorazit cestu "nepřátelským územím". Ale tomu tak není. Realitě je
stejně blízká představa, že foton je pomluva, která se šíří mezi lidmi -
vzruší je (rozkmitá je), oni ji předají dál, a zapomenou na ni. I toto je
samozřejmě jen příměr.
Chcete-li hlubší fyzikální obraz, podle kterého by taky šlo něco
spočítat, pak nezbyde než sáhnout po nějaké učebnici fyzikální optiky.
Z hlediska kvantové teorie je to všecko jednak složitější, jednak
jednodušší. Zavádíme tzv. účinný průřez pro to, abychom jednoduše popsali
"velikost terče" při interakci (srážce); průběh srážky se počítá kvantově,
ale o tom nemá smyslu mluvil takhle "letmo". Taky foton (coby kvantovaná
elektromagnetická vlna) v látkovém prostředí je "něco jiného" než foton ve
vakuu - v látce se prostě na elektromagnetických kmitech E, B "přiživí" i
nabité částice tvořící látku (jádra, elektrony). Proto vychází ustálená
rychlost menší než c. Rozbor přechodových jevů je dosti složitý i klasicky
(viz např. Stratton: Teorie elektromagnetického pole).
Mimochodem, takové neutrino dokáže proletět Zeměkoulí s velice
vysokou pravděpodobností, že se vůbec neodchýlí.
Dotaz: Docela by mě zajímalo, jak je možné, že vlákno žárovky svítí,
roztavené železo vyzařuje světlo (ale kapalný kov při nižší teplotě ne) atd.
i v naprosté tmě. Kde se tedy "berou" fotony v takových situacích? (Libor Tinka)
Odpověď: Již docela dávná pozorování ukázala, že všechna tělesa (včetně např.
roztaveného kovu) v závislosti na své TEPLOTĚ vyzařují v širokém oboru
vlnových délek, při nižších teplotách spíše na dlouhých vlnových délkách
(naše tělo svítí v infračerveném oboru a proto je pomocí vhodné
technologie - např. termovize - viditelné),
při vyšších teplotách se intenzita zvětšuje a posunuje ke kratším vlnovým
délkám (vlákno žárovky, Slunce). Drobnou komplikaci popisu znamená kvalita
a barva povrchu (černá tělesa lépe pohlcují a stejně tak lépe vyzařují),
proto si fyzici vymysleli dokonalou abstrakci -"absolutně černé těleso".
To je popsáno v mnoha knihách i na webových stránkách (hledejte pojem
v uvozovkách), atomy zahřátého tělesa jsou naexcitované a tu a tam vyšlou
nějaký foton. Nemusí být zahřáté moc, pak ale vysílají hodně málo
energetické fotony, které sice neuvidíte, ale které se dají změřit.
Příkladem takových hodně hubených fotonů jsou fotony reliktního záření,
které odpovídá teplotě jen asi 2,7 K.
Dotaz: Jaká by byla délka fotonu pro pozorovatele "vezoucího" se na něm? (hubert mazanek)
Odpověď: 1) V celém dalším mluvení míním "světelnou rychlostí" rychlost
299792458 m/s, tedy např. rychlost světla ve vakuu. Světlo v hmotném
prostředí je jev mnohem složitější.
2) Termín "délka fotonu" není jasný. Míní se tím vlnová délka (barva
světla)? anebo představa, že foton je kulička, mající tím pádem v jednom
směru jistou délku?
3) Žádného pozorovatele, který někdy vůči mě stál anebo měl
podsvětelnou rychlost, nelze urychlit na rychlost světelnou (a ovšem tím
spíše ani na rychlost nadsvětelnou). Byla by k toku potřeba nekonečně velká
energie. A pro skutečného pozorovatele, ať se pohybuje vůči mně jakkoli
rychle, se světlo pohybuje úplně stejnou rychlostí, jak pro mne. On tedy
necítí to, že se - vzhledem ke mně - "blíží rychlosti světla" tak, že by se
on sám nějak světlu blížil, např. že by ho doháněl anebo že by mu unikalo
pomaleji než mu unikalo dříve.
Ovšem hlavní věc: toto vše NENÍ vlastnost světla, fotonu apod. To je
vlastnost prostoročasu (což je právě vlastní objev Einsteinùv; popis
"kontrakce délek" znali už dříve Lorentz aj.)
Dotaz: Zajímalo by mě, jak vysoko je vlastně hladina moře, když se
mluví o nadmořské výšce?
A jakou barvu má tma, skládá-li se vůbec z nějakých barev? (Čermák Stanislav)
Odpověď: Milý kolego, a) hladina moře odráží rozložení hmoty na
Zemi, často se používá termín geoid pro plochu, která
aproximuje střední mořskou hladinu, podívejte se například
na stránky http://dgfi2.dgfi.badw-muenchen.de/geodis/GRAV/Geoid.html, http://www.ngs.noaa.gov/GEOID/geoid.html, http://www.sgs.sk/HTML/geodezia1_1.htm .... Od této plochy se pak měří nadmořské
výšky.
b) Ja chápu tmu jako černo kolem sebe, kdy nic NEVIDÍM. Tj.
nepřijímám dost fotonů ve správných vlnových délkách pro
mé oči, abych to vyhodnotil jako světlo. Tj. může na mne
klidně poblikávat děsně slabá červená lucernička a
stejně ji neuvidím. Nebo nevidím infračervené blikání
diody na ovladači televizoru, natož rádiové signály
vysílané z mého mobilu. Tj. v mnoha situacích nevidím nic
(vidím tmu), neboť mé oči jsou udělané na sledování
světla v oboru, kde dominuje Sluníčko.
Dotaz: Mohli byste mně prosím nějakým srozumitelným způsobem vysvětlit, co jsou to "virtuální částice"?
(kamil)
Odpověď: Milý kolego, o tom se dá povídat mnoha různými způsoby, ale
pořádně to pochopíte, když se seznámíte s kvantovou
teorií pole, už existuje dokonce česká kniha J. Formánek:
Úvod do relativistické kvantové mechaniky a kvantové teorie
pole, Karolinum 1998, 2000. V této teorii a speciálně v její
diagramatické reprezentaci vystupují částice, které
nesplňují "správný" vztah mezi energií, hybností
a klidovou hmotou, tedy nemohou existovat jako volné částice a
vystupují jako mezistavy ve všech možných alternativách
vývoje daného systému (kvantová teorie se právě vyznačuje
tím, že uvažuje všechny možné cesty vývoje a skládá
jejich příspěvky). Například při popisu rozptylu dvou
elektronů počítáme v kvantové elektrodynamice s tím, že si
"vymění" foton (a skládáme to s příspěvky
výměny více fotonů...), tento virtuální foton však nemusí
splňovat relaci E = pc jako každý normalní reálný foton.