FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 27 dotazů obsahujících »fotonů«

21) Virtuální částice10. 07. 2002

Dotaz: Mohli byste mně prosím nějakým srozumitelným způsobem vysvětlit, co jsou to "virtuální částice"? (kamil)

Odpověď: Milý kolego, o tom se dá povídat mnoha různými způsoby, ale pořádně to pochopíte, když se seznámíte s kvantovou teorií pole, už existuje dokonce česká kniha J. Formánek: Úvod do relativistické kvantové mechaniky a kvantové teorie pole, Karolinum 1998, 2000. V této teorii a speciálně v její diagramatické reprezentaci vystupují částice, které nesplňují "správný" vztah mezi energií, hybností a klidovou hmotou, tedy nemohou existovat jako volné částice a vystupují jako mezistavy ve všech možných alternativách vývoje daného systému (kvantová teorie se právě vyznačuje tím, že uvažuje všechny možné cesty vývoje a skládá jejich příspěvky). Například při popisu rozptylu dvou elektronů počítáme v kvantové elektrodynamice s tím, že si "vymění" foton (a skládáme to s příspěvky výměny více fotonů...), tento virtuální foton však nemusí splňovat relaci E = pc jako každý normalní reálný foton.
(J.Dolejší)   >>>  

22) Fyzikální podstata plamene,...09. 07. 2002

Dotaz: 1. Co je to z fyzikálního hlediska vlastně plamen. 2. četl jsem o zrychlení světa je to pravda, a jak se dá zrychlit? 3. a dále jsem nedávno četl, že se povedlo přenést jakousi hmotnou věc laserovým paprskem.-něco jako ze star trek je to možné,pokud ano,na jakém principu 4. prý existuje kyslík O4 jaké má vlastnosti, jak vzniká, dá se dýchat,způsobuje nějaké jevy? (marek)

Odpověď: 1. Podstatou plamene je  plasma (nízkoteplotní), tedy částečně ionizovaný plyn. Vzniká tím, že chemickou reakcí (hořením) se vzniklé plyny (proto hořící hliník nemá plamen, Al2O3 je při dosažených teplotách stále tuhý) dostatečně zahřejí natolik, aby došlo k ionizaci - tj. roztržení molekuly (jako celek neutrální) na nabité částice.
2. Nejspíš jste četl o světelných jevech v hmotném prostředí, kde se světlo šíří rychlostí menší než (legendárních) c=299 792 458 m/s. Cokoliv by mohlo přenést informaci, se nemůže pohybovat rychlostí větší než c, ledaže bychom přispustili, že příčina může nastat později, než důsledek. "Nepřekročitelnost rychlosti světla" je totiž nikoli vlastnost světla, ale vlastnost prostoročasu, ve kterém žijeme.
3. Těžko říci, nevím, co máte na mysli. Ale: 1) Světlo můžete nahlížet jako proud fotonů, majících svou energii a tedy i hmotnost. 2) "Laserová pinseta" je známa a používá se i v praxi.
4. Pokud je mi známo z mých chlapeckých let, vedle obyčejného kyslíku O2 a ozonu O3 byla za vysokých tlaků zjištěna i spektra poukazující na molekuly O4. Ani bych se tomu nedivil, ale moc velký význam bych tomu zase nepřikládal. Dýchat se nedá ani ozon (alespoň ne dlouho :-((( ) , jistě by to bylo silné oxidační činidlo.
(J.Obdržálek)   >>>  

23) Změny vlastností plynů při ionizaci21. 06. 2002

Dotaz: 1) Kde lze najít (web nebo publikace) něco o změnách vlastností plynů a vodních par při ionizaci. Zajímá mne zejména změna elektrického odporu a elektrické pevnosti plynů při ionizaci. 2) Lze docílit ionizace pomocí laserového paprsku ? (Jiří Büllow)

Odpověď: 1/ Konkrétně fyziku plazmatu lze najít na stránce http://vega.fjfi.cvut.cz/docs/umfmat/umf_url.html,
tam se klikne na čtyřku, a jde se poněkud dolů - pod jadernou fyzikou je fyzika plazmatu. Další informace naleznete na stránkách:
http://www.plasmas.org/index.html, http://FusEdWeb.pppl.gov/index.html, http://www.plasmacoalition.org/, http://fusioned.gat.com/Teachers/SlideShow.html

http://www.aldebaran.cz/ Bohužel na tomto serveru nejsou udělány výboje v plynech, nicméně jsou tam hezké obrázky a hlavně české povídání o plazmatu vůbec.

Co se týče změny elektrické vodivosti a elektrické pevnosti při ionizaci, je odpověď značně závislá na druhu plynu a stupni ionizace. Obecně se dá říci, že ionizovaný plyn se stává elektricky vodivý (je třeba uvážit, že v atmosféře kolem nás je v každém kubickém cm asi 2000 iontů), a že za určitých podmínek (aplikací dostatečně vysokého napětí mezi elektrodami, mezi kterými se vodivost plynu měří) dojde k lavinovému efektu, kdy již vytvořené elektrony a ionty na své dráze dále ionizují, čímž stupeň ionizace, a tím i vodivost prudce stoupá. Nemalou úlohu přitom hrají i tzv. gama procesy, tj. sekundarni emise elektronů z povrchu elektrody. Závislost tzv. zápalného napětí samostatného výboje na součinu tlaku plynu a vzdálenosti rovinných elektrod (p.d) udává tzv. Paschenův zákon, což je pro daný plyn plynulá křivka s jedním minimem pro určité p.d. Zápalné napětí lze snížit, pokud se poskytnou nějaké nabité částice navíc (tj. kromě těch, které si elektrony nebo ionty na své dráze nebo interakci s elektrodou samy "vyrobí"), např. ionizací prostoru mezi elektrodami zářením, aplikací dodatečného napětí na pomocnou elektrodu s ostrým hrotem umístěnou mezi hlavními elektrodami (tak se zapaluje fotografický blesk), termickou emisí elektronů z ohřátého povrchu katody (tak se zapaluje výboj v zářivce). Elektrická pevnost plynů je termín technický, který je v podstatě ekvivalentní termínu zápalné napětí. Moje představa o něm je ta, že se vztahuje k přesně definovanému tvaru elektrod, mezi kterými se tato pevnost měří, a udává se za daného, většinou atmosferického tlaku (pokud tedy výboj vznikne, bude to jiskrový výboj).

2/ Co se týče druhé otázky, ionizace pomocí laserového paprsku, tam odpověď závisí na energii fotonů a na celkové hustotě energie ve svazku. Vzhledem k tomu, že teď máme v ČR výkonný laserový systém PALS, který se používá na generaci plazmatu interakcí laserového paprsku s pevnou látkou, doporučuji podívat se na jeho www stranku (v češtině) http://www.pals.cas.cz/pals/pac001hp.htm.(Prof.RNDr. Milan Tichý DrSc. - 21.6.2002)

(M. Tichý)   >>>  

24) Kmitání fotonů13. 05. 2002

Dotaz: Dá sa povedat že: Intenzita je výkon, kolik energie za jednotku času vyzarime, zatimco frekvence je typ svetla, v prípadě viditelného svetla jeho barva. V prípadě rádiových vln je to to, co ladíte na rádiu, frekvence udává počty kmitů za sekundu, ale nerika, jak silne kmitaji, jen jak rychle. Fotony kmitaju predsa stale ryczhlostou svetla? Dalo by sa to vysvetlit aj rozdielnou rychlostou kmitania. Ked si predstavite , ze svetelna vlna sa siri rovnobezne po povrchu stola z jedneho konca na druhy. A fotony v tejto vlne kmitaju nahoru a dolu, teda kolmo na povrch stola. A ked kmitaju pomalsie ako sa svetlo siri a drahu jednotlivych fotonov si zakreslite v case dostanete pomale radiove vlny. A ked kmitajú rychlejsie ako sa svetlo siri! , teda rychlejsie ako "c" ich draha bude vyzerat ako rychle vysokoenergeticke kmity gama paprskov s kratkou vlnovou dlzkou. Takze ako to je môzu kmitat fotony rychlejsie alebo pomalsie ako rychlost svetla? (Marek K.)

Odpověď: Věta "Fotony kmitajú predsa stále rychlosťou svetla" nedává smysl. Fotony nejsou kuličky na gumičce, které by kmitaly kolmo ke gumičce v klidu (a tedy kolmo ke směru šíření), aby se dalo uvažovat o jejich rychlosti ve směru kolmém k šíření vlny. Gumička (bez jakýchkoliv kuliček) zobrazuje pole jako jakýsi "stav napjatosti protostoru", který je "napjatý" (tj. je tam nenulová intenzita E elektrického pole resp. indukce B magnetického pole) někde a někdy víc, jinde a jindy méně, a tyto změny se dějí úhlovou rychlostí (počet kmitů za dobu), a nikoli posupnou rychlostí (dráha za dobu), která je pro světlo ve vakuu vždy rovna c, tj. zhruba 300 000 000 km/s. "Kuličky" (fotony) se tam neuplatňují jinak, než tím, že energie gumy (pole) se mění jen v určitých dávkách (kvantech). Fotony tedy nekmitají, ale řekněme, že každý z nich, jak tak letí (rychlostí světla ve směru šíření vlny), má svou barvu, která odpovídá frekvenci kmitů. Představte si, že mají barvu, a navíc pro nás pro teď třebas střídavě světlají a tmavnou s touto frekvencí, tj. jeden kmit jim trvá dobu T. Pokud byste si značili jejich na cestě (kudy letí) body, kde měly barvu nejsilnější, pak dvě značky na cestě budou vzdáleny o délku L vlny. Ta je rovna L = c.T, kde T je doba kmitu. Modrý foton bude mít tuto vzdálenost zhruba poloviční oproti červenému, třebaže se šíří ve vakuu přesně stejně rychle. Jenže ten modrý kmitá rychleji.
(J. Obdržálek)   >>>  

25) 1. Zvětšení hmotnosti = zvětšení gravitace?26. 03. 2002

Dotaz: Podle speciální teorie relativity se s vzrůstající rychlostí zvyšuje hmotnost pohybujícího se objektu (vůči pozorovateli, který je v klidu). Mění se tedy i gravitační síla, kterou působí těleso (resp. platí Newtonův gravitační zákon, nebo to nějak postihuje obecná relativita)? (Zdeněk)

Odpověď: Máte-li obecně nějaký složitý systém, ve kterém jsou různé hmoty a libovolně rychle se vůči sobě pohybují, je potřeba aplikovat obecnou teorii relativity. V některých případech je to ale jednodušší. Když budete mít (skoro) plochý prostor, tj. např. daleko od Slunce, pak stačí uvažovat Newtonův zákon a testovací tělísko uvažovat s hmotnosti, která odpovídá jeho rychlosti. Když se však například ke Slunci přiblížíte (plochý prostor přestane být ideální aproximace), máte šanci vidět odchylky od newtonovské gravitace - fotony se například v poli ohnou dvakrát více, než by odpovídalo newtonovskému přitahování fotonů s hmotností odpovídající jejich energii. Tento faktor 2 je specifický pro Einsteinovu OTR a je jiný pro některé další alternativní teorie (různé teorie různě pojednávají geometrii prostoru).
(J. Dolejší)   >>>