Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 125 dotazů obsahujících »fyzikální«
24) Mpemba effect (Mpembův jev)
15. 08. 2007
Dotaz: Dobrý den Můj dotaz je ohledně mrznutí vody. Je pravda, že voda o vyšší teplotě
(např.: 8°C) zmrzne rychleji, než voda o teplotě menší (např.: 5°C)? (Petr Rudolf)
Odpověď: Doporučuji, abyste si to sám vyzkoušel. Budeme rádi, když nám pak podáte zprávy o svém experimentování, ať už to dopadne jakkoliv.
Zmíněný jev je v odborné literatuře znám pod názvem Mpemba effect (Mpembův jev) podle spoluautora článku, díky kterému bylo toto téma v minulém století "znovuobjeveno".
Mrznutím vody jsem se zabýval ve své
diplomové práci, z níž zkráceně ocituji závěr:
Teplejší voda skutečně může za stejných výchozích podmínek (až na rozdílné počáteční teploty) zmrznout v celém svém objemu dříve než voda původně studenější. Není to však pravidlem a zdá se to být spíše méně obvyklé. Velká popularita Mpembova jevu (otázka „Která voda zmrzne nejdřív – studená, nebo teplá?” zazněla dokonce v pořadu Nikdo není dokonalý) při jeho ve skutečnosti poměrně nesnadném pozorování (jednak proto, že často vůbec nenastane, jednak proto, že pokud nastane, nemusí být příliš výrazný) spočívá patrně v jeho zdánlivém rozporu s fyzikálními principy. Při bližším pohledu se však tento paradox dá objasnit způsoby přístupnými i středoškolským studentům.
Nejvýrazněji se Mpembův jev projeví v prostředí pokrytém ledem a sněhem (venku na mrazu nebo v poněkud zanedbané mrazničce). Nádoba s horkou vodou se může do takového podkladu protavit, a získat tak výrazně lepší tepelný kontakt s okolím. V praxi pak může rozdíl časů od počátku chlazení až do úplného ztuhnutí pro horkou a pro studenou vodu činit desítky procent.
Původně teplejší voda může zmrznout dříve než voda původně studenější také v případě, kdy se dostatečná část původního objemu díky vyšší teplotě odpaří. Tuhnutí pak probíhá v menším množství vody. Pečlivá hospodyně by si tedy mohla za jistých okolností všimnout, že rychleji získá kostky ledu v případě, kdy vodu před umístěním do mrazicího boxu ohřeje v rychlovarné konvici nebo mikrovlnné troubě. Doporučit jí takový postup ale můžeme jen sotva, protože je skoro určitě výhodnější dát do nádoby vodu studenou a rovnou snížit její množství o to, co by se bývalo vypařilo z horké vody.
Další okolností, která nesporně Mpembův jev podporuje, je přechlazení vody (to je jev, kdy voda zůstává při běžném tlaku v kapalné fázi i při teplotách pod nulou) – to ale pouze v případě, že se původně teplejší voda přechladí méně (tj. na vyšší teplotu) než voda původně studenější (jde o nutnou podmínku). Mpembův jev nastane tím spíše, čím více se teplota přechlazení původně teplejší vody blíží teplotě tuhnutí, případně čím více se teplota přechlazení původně studenější vody blíží teplotě v mrazničce. Přechlazování vody je ovšem do značné míry jev náhodný, takže spoléhat se na něj v jednotlivých pokusech nemůžeme.
Výše uvedené závěry jsem teoreticky i experimentálně ověřil. V citované práci si můžete přečíst o dalších okolnostech, které by mohly mrznutí vody ovlivňovat, najdete tam také odkazy na související články.
Dotaz: Mám výkonný spotřebič s velkým trafem, který někdy při zapnutí vyrazí 25A
jistič. Jak zpomalit proudový náraz při sycení trafa? Jedná se o jednofázové
zařízení. (Jan Havelka)
Odpověď: Tento problém jsme řešili (a úspěšně vyřešili) v našem fyzikálním
praktiku v případě "velkého" jednofázového i trojfázového transformátoru
2500VA. Týká se to například i školních autotransformátorů. Spotřebič je
připojován k síti přes rezistor(y) v sérii (cca 10 ohm / 20 Watt), který
je po době asi jedné sekundy (stačí i kratší) přemostěn kontakty
stykače. Sepnutí stykače po jedné sekundě zajišťuje standardní komerční
časové relátko vzhledem a velikostí podobné běžnému jističi.
Tepelná setrvačnost (tepelná kapacita) uvedených rezistorů je
dostatečná, aby se po tu dobu 1s co nimi teče proud (při napětí sítě
230V je to prinicipiálně nejvýše cca 23A (špička) tepelně nezničily.
Lze použít i tzv. kompenzační stykače, které mají příslušné rezistory a
kontakty už rovnou vestavěny (osobně nevyzkoušeno).
V případě zájmu o profesionální řešení (včetně příslušných prohlášení o
shodě... např do školy) dodám spojení na odbornou firmu.
Dotaz: Dobrý den, V naší lokalitě se uvažuje o otevření uranového dolu. Paradoxně jsem
se přistěhovala od jediného funkčního uranového dolu:) Vzniká kolem toho dosti
velká hysterie. Zajímalo by mě, pokud se už v místě ložisko uranové rudy
vyskytuje, jsou – li rizika větší, nebo se zvyšují až těžbou. Myslím
riziko pro obyvatele kteří v dole nepracují – uvádí se zvýšené riziko
vrozených vad, potratů, nádorových onemocnění, zamoření zdrojů vody, zdravotní
závadnost zemědělských produktů. Též bych ráda věděla, z kterých izotopů se
skládá „ přírodní uran „ Díky (leny)
Odpověď: Bez bližšího určení lokality se mohu omezit jen na obecná tvrzení. Lokalita, kde se uvažuje o těžbě uranu téměř jistě bude vykazovat zvýšené radioaktivní pozadí (tedy intenzitu záření). Tento ukazatel však obvykle nenabývá nebezpečných hodnot. Obecně mírně zvýšená radioaktivita sice na jedné straně statisticky může vést k mírně zvýšeným rizikům vrozených vad a nádorových onemocnění, na druhou stranu ale zase stimuluje imunitní systém a může působit i léčivě (na tomto principu byly mimo jiného založeny i lázně Jáchymov).
S případnou těžbou se radioaktivita v okolí může zvýšit, záleží ale dost na technologii, která bude použita.
Rád bych zde zdůraznil, že radioaktivita je přirozený jev probíhající všude okolo nás i v nás. Problém tedy není, je-li něco radioaktivního (nějak radioaktivní je prakticky cokoli), problémem může být, překročí-li se určitá míra. Existují normy a hygienické limity, které definují, co je ještě přípustné. Tyto normy jsou přitom velmi přísné (z biologického, chemického a fyzikálního pohledu by člověk měl zcela bez problémů snést mnohonásbě vyšší ozáření, než jaké tyto normy povolují). Máte-li tedy obavu či podezření, že ve vašem okolí dojde či došlo k překročení těchto limitů, obraťte se na Státní úřad pro jadernou bezpečnost (www.sujb.cz).
Dotaz: Dobrý den, narazil jsem na zajímavou otázku, kterou mi položil kamarád a já
nevědl, jak na ni odpovědět. Proč se za bouřky nesmí zpívat? Děkuji Miroslav
Staněk (Miroslav Staněk)
Odpověď: Z fyzikálního hlediska nemá zpěv žádný vliv na průběh bouřky ani na nebezpečí, která by mohla pěvci při bouřce hrozit.
Dotaz: Čím se dá zvážit nebo zjistit hmotnost vzduchu kromě fyzikálních tabulek? (Michaela Marková)
Odpověď: Možností je několik, uvěďme proto jen dva příklady. Měřit můžeme třeba tak, že pumpičkou natlakujeme dostatek vzduchu třeba do PET láhve (musíme si k tomu vyrobit vhodný ventilek, např. cykloventilek vsazený do víčka láhve). Takto natlakovanou láhev zvážíme a výsledek si zapíšeme. Potom z láhve upustíme 1 litr vzduchu (dobře se to dělá třeba hadičkou do jiné láhve pod vodou) a takto odlehčenou láhev opět zvážíme. Rozdíl naměřených hmotností je pak hmotností jednolo litru vzduchu za běžného atmosférického tlaku.
Další možností je pak třeba výpočet nebo odhad. Ze školy si pamatujeme, že jeden mol plynu zabírá za běžných podmínek objem 22,4 litru. Vzduch je složen převážně z dusíku (asi 78%) a kyslíku (asi 20%). Jádro atomu dusíku tvoří 7 protonů a obvykle 7 neutronů, molekuku dusíku však tvoří dva atomy, hmotnost jednoho molu dusíku je tedy přibližně 2*(7+7) = 28 gramů. Jádro atomu kyslíku je tvořeno 8 protony a obvykle 8 neutrony, molekulu opět tvoří dva atomy, mol kyslíku tedy váží zhruba 2*(8+8) = 32 gramů. Je-li vzduch směsí hlavně dusíku a kyslíku, bude jeho molární hmotnost kdesi mezi 28 a 32 gramy na mol, vzhledem k většímu zastoupení dusíku asi blíže k těm 28 g/mol, počítejme tedy s 29 g/mol. Jestliže tedy 1 mol má objem 22,4 litru a váží 29 gramů, potom jeden litr musí vážit 22,4 krát méně, tedy přibližně 1,3 gramu (což je v docela dobré shodě s výsledky měření výše popsanou metodou s tlakováním PET láhve).