Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 125 dotazů obsahujících »fyzikální«
54) Rosný bod a relativní vlhkost vzduchu
28. 02. 2004
Dotaz: Nějak nemohu nikde najít vyjádření závislosti teploty rosného bodu na relativní
vlhkosti okolí. Poradíte mi? (Ludvík Trnka)
Odpověď: Pokud jde o přepočet relativní vlhkosti na teplotu rosného bodu, pak je
nutné ještě znát aktuální teplotu, k níž se hodnota relativní vlhkosti
vztahuje. K výpočtu se pak s plně vyhovující přesností využije poněkud
zjednodušený tvar Clausius - Clapeyronovy rovnice (viz např. Pechala,F.,
Bednář, J.: Příručka dynamické meteorologie, Academia, Praha, 1991) upravený
do výrazu:
E = Eo exp [- L/R ( 1/T - 1/To )],
kde E značí parciální tlak nasycené vodní páry při teplotě T (v kelvinech),
To = 273,16K, L je skupenské teplo vyparování, R měrná plynová konstanta vodní
páry a Eo parciální tlak nasycené vodní páry při teplotě To (viz běžné fyzikální
tabulky).
Pro výchozí teplotu T určíme z uvedeného vztahu hodnotu E, tu vynásobíme
relativní vlhkostí vyjádřenou jako desetinné číslo z intervalu 0 - 1 (např.
0,3 pro rel. vlhkost 30%). Dostaneme tak zjednodušeně, ale ve velmi dobrém
přiblížení, skutečný parciální tlak vodní páry pro náš případ. Ten se zpětně
dosadí za E a vypočte se teplota T, jež by při daném parciálním tlaku vodní
páry odpovídala stavu nasycení. Tuto teplotu pak můžeme interpretovat jako
hledanou teplotu rosného bodu. Jinak toto vše je tabelováno v tzv.
Psychrometrických tabulkách.
55) Mechanický model napětí, zesilovače a střídavého proudu
23. 01. 2004
Dotaz: Prolétl jsem články o elektřině a magnetismu, ale to co jsem hledal, jsem nenašel. Vždy se dovídám dogmata.
1.) Tak např. vždy používáte el. napětí. Do obvodu musíme zavést el. napětí, aby mohl téct proud. Ten ale téct vůbec nemusí.. tomu nerozumím, co je tedy el. napětí, resp. jak si ho představit (a to na molekulární úrovni -
pokud tak lze).
2.) V učebnici Elektřina a magnetismus pro střední školy je zakreslen obvod s
tranzistorem - obr. "Tranzistorový zesilovač"- podobný lze nalézt i jinde (i ve
skriptech elektroniky). Vždy tam je řečeno, že na výstupu je obrácená fáze
napětí, ale proč to tak je? Fyzikář mi to vysvětlil tak, že jsem si připadal,
jako by mi neodpovídal na otázku - asi jsem jediný, kdo tomu nerozumí. U tohoto
obvodu nerozumím ani vstupu, výstupu a podobným pojmům, v knize definovány
nejsou.
3.) Další problém je s představou střídavého proudu. Kudy jdou
elektrony případně díry? U stejnosměrného je jasně dané, kde je + a kde -, ale
střídavý, chvíli jde do obvodu na obě strany + a pak zase -. Byl bych rád, kdyby
jste mi pomohli v tom udělat jasno. (Liam)
Odpověď: K 1. otázce: Co je to napětí?
Než napíši obecnou odpověď, popíši něco obdobného v mechanice.
Kolem Země je gravitační pole. Když umístím 10 m nad podlahu kilovku, bude v
tom místě mít jinou potenciální energii než na podlaze. Rozdíl bude
100 J. Mohli bychom říci, že mezi těmi místy (i když tam žádné
kilovky nebudou) je "mechanické napětí" 100 J/kg. Toto
"mechanické
napětí" charakterizuje ROZDÍL STAVŮ mezi těmito dvěma místy
gravitačního pole. Nic "molekulárního" si představit k tomu
nedovedu, to co jsem popsal, platí i kdyby kolem Země bylo vakuum. Dosaďte místo
Země nabité těleso, místo kilovky nabitou kuličku jednou blíž a
jednou dál a opět můžeme říci, že v těchto dvou bodech bude mít
nabitá kulička rozdílnou potenciální elektrickou energii, rozdíl
těchto energií přepočtený na 1 coulomb, tj. třeba 6 J/C, což je ve
voltech 6V. Je to "elektrické napětí" mezi těmito dvěma místy pole.
I zde charakterizuje elektrické napětí ROZDÍL STAVŮ mezi dvěma místy
elektrického pole. (Svým žákům vždycky říkám, že když ukazují na
nějaké napětí, potřebují k tomu dva prsty, aby ukázali ta dvě místa)
Nic "molekulárního" si tomu představit opět nedovedu, to co jsem
popsal platí i když je to elektrické pole ve vakuu. To napětí mezi
dvěma místy vodiče se dá vytvořit různé, připojením článku, pohybem
magnetu v okolí, atd.
Ke 2. otázce: Co znamená opačná fáze napětí na vstupu a výstupu zesilovače?
Opět to zkusím s mechanickou analogií.
Představte si spojitou nádobu tvaru písmene U s vodou,
kde pravé rameno bude mít velký průřez a levé malý, něco jako
kropicí konev. Když pustím do konve nějaký "vstupní signál" - v
širokém rameni budu například pajtlovat pístem 1 cm dolů a 1 cm
nahoru od rovnovážné polohy, bude "mechanické napětí" mezi
rovnovážnou polohou a okamžitou polohou kmitat od 0 J/kg do -0,1
J/kg (píst dole) k 0 J/kg (píst při návratu uprostřed) až k +0,1
J/kg (píst nahoře). V sousední úzké rouře (tj. "výstup zesilovače"
dejme tomu s plochou průřezu 10krát menší) bude voda kmitat 10 cm
nahoru a 10 cm dolů, tj. s vyšším napětím , které bude kolísat
nejdřív nahoru od 0 J/kg k + 1 J/kg , potom přes nulu dolů k -1
J/kg atd. Tento zesilovač pracuje s desetinásobným zesílením,
vstupní signál má opačnou fázi než výstupní (když jde píst v konvi
dolů, stoupá hladina v úzké rouře nahoru a obráceně). Co je vstup, plyne ze znalosti českého jazyka. Vstupem může např. být napětí z
mikrofonu, které přivádím na vstupní svorky zesilovače, výstup je
napětí, které ze zesilovače přivádím třeba na svorky reproduktorů.
Ke 3. otázce: Jak si představit střídavý proud?
Do třetice s mechanickým modelem.
V hadici, ve které jsou oba konce napojeny na vstup a výstup čerpadla,
proudí voda stejnosměrně kolem dokola.
Teď elektromotorek toho čerpadla budu krmit tak,
aby chvíli čerpalo zleva doprava a potom zprava doleva.
Vodní proud poteče chvilku doleva, chvilku doprava. Proud bude
střídavý, ovšem ne sinusový ale zhruba obdélníkového průběhu.
Sinusový průběh vodního proudu bychom mohli v této trubici docílit
třeba tak, že bychom čerpadlo odstranili, konce propojili a po kusu
hadice jezdili sem tam sinusově (jako při kývání kyvadla) válečkem
na nudle. Z mikrofyzikálního pohledu (opět velmi primitivního) na
elektrický proud doplňuji, co už jednou v Odpovědně zaznělo.
Opakuji: "Nositele nábojů ve vodičích, tj. elektrony v kovech, ionty v
kapalinách a plynech a elektrony a "díry" v polovodičích opravdu
cestují, jak je elektrické pole žene, !!!!kolem dokola!!! v uzavřeném
obvodu (odstartují najednou). Samozřejmě po sepnutí obvodu se
nechovají jako účastníci májového průvodu, kteří udělají vpravo vbok
a jdou ukázněně směrem, kterým je žene pole, ale spíše tak jak
naznačuji svým žákům modelem:
Nositelé nábojů představují hemžící se
mravence v mraveništi, kde vytvořím pachové pole tím, že na jednu
stravu mraveniště dám lákavý med a na druhou něco smradlavého (otevřu
tam třeba lahvičku se čpavkem). Tím mezi těmito dvěma body bude "smradové
napětí".
Díky smradovému poli hemžení neustane, nebude ale zcela
souměrně chaotické (středová rychlost nebude 0), ale bude trošičku převládat
směr rychlosti mravenců k medu. Kam pocestují, tj. jaký je směr proudu, když
smradové pole vyměním, je snad jasné. Samozřejmě mohu to smradové pole střídat
a proud mravenců pak bude střídavý."
Ve vodiči je to chaotické hemžení částic - nosičů náboje velmi velkou
rychlostí, závislou na teplotě, ta usměrněná rychlost (složka rychlosti)
je ve srovnání s tím strašně prťavá, závislá pro daný vodič mj. na napětí
mezi jeho konci.
Dotaz: Nikde na těchto stránkách jsem nenalezl nic z jednoduché fyziky pro základní
školu např čím se měří tlak? (SPetex)
Odpověď: Dobrý den! V Odpovědně a na celém FyzWebu se snažíme doplňovat to, co ve standardních učebnicích není a ne je nahrazovat. Materiály a odkazy by měly sloužit k rozšíření základních vědomostí.
K Vašemu dotazu: Tlak měříme přístroji, kterým obecně říkáme tlakoměry nebo barometry. Liší se podle toho, kde a jaký tlak jimi měříme. Podle vhodnosti můžeme použíttlakoměr kapalinový, deformační nebo měničový.
Běžně nás zajímají hodnoty atmosférického tlaku, k jejichž měření slouží
barometry. Rtuťový barometr je založen na Torricelliho pokusu
(rtuťový sloupec v U-trubici má různou výšku hladiny v
závislosti na tlaku). Je-li náplní barometru voda nebo líh, má přístroj
větší citlovost, ale menší rozsah.
Deformační manometr využívá tenkostěnnou kovovou nádobku, která se různě
deformuje v závislosti na rozdílu tlaků uvnitř nádobky a měřeného
tlaku venku. Deformace stěn nádobky se přenáší na ručku přístroje a na
stupnici odečítáme tlak. Pokud je přístroj zkonstruován tak, že měří v
oblasti atmosférického tlaku, nazýváme jej aneroid.
Měničové tlakoměry hrají důležitou roli při měření velmi nízkých
tlaků. Obsahují měnič, který převádí tlak na jinou fyzikální veličinu.
Nejčastěji se používají piezoelektrické nebo odporové měniče, které
převádějí tlak na elektrické napětí.
V běžném životě se můžeme setkat s barometry visícími na zdi, které nám
ukazují, jak se mění atmosférický tlak (stoupající tlak znamená v našich
zeměpisných souřadnicích většinou zlepšení počasí). Jsou to převážně
aneroidy. V každém autě byste měli najít manometr, kterým se přeměřuje tlak vzduchu v pneumatikách. U-trubici zase můžete vidět při výuce fyziky, kde vám ji fyzikář určitě rád ukáže. I když se to na první pohled nezdá, přístrojů na měření tlaku je kolem nás celkem dost.
Dotaz: Bigbangová teorie mimo jiné také říká, že je zbytečné zabývat se tím, co bylo
před velkým třeskem, protože nebyl čas. Podle mě si ale odporuje bigbangová
teorie vzniku vesmíru s tím, že se vesmír neustále rozpíná a pak zase
smršťuje. To by znamenalo, že nějaká hmota vybuchla, začala se rozpínat, a
začal plynout čas. Potom by gravitační síly převážily nad silou, kterou
vytvořil výbuch a urychlil hmotu, a vesmír by se začal postupně smršťovat.
Čím dál tím rychleji, až by se smrštil do malého objemu a nebyl by čas
(nekonečně hmotné těleso, podle teorie relativity nekonečně pomalé plynutí
času), potom by to teda zase bouchlo a čas by zase byl? Problém je v tom, že
když by čas v tu chvíli kdy je vesmír nejmenší nebyl, tak by nebyl po
nekonečné dlouhou dobu, takže už by nikdy nebylo nic...
Díky za odpověď.
(Antonin Kus)
Odpověď: Dobrý den!
Teorie velkého třesku jistě nezakazuje ptát se, co bylo na "počátku
existence" (námi pozorovaného) vesmíru. Problém spočívá spíše v tom, že
na základě současných obecně přijímaných fyzikálních teorii nelze na
takovou otázku seriózně odpovědět. Anebo ještě přesněji: existují různé
obecné návrhy, ale všeobecná shoda nepanuje a popravdě řečeno zatím ani
panovat nemůže.
Také se nyní spíše zdá, že ve skutečnosti NEŽIJEME v "oscilujícím"
vesmíru, na jehož počátku byl velký třesk, který se nyní rozpíná, pak se
jeho rozpínání zastaví, začne se opět smršťovat až vše skončí ve velké
singularitě, velkém krachu. Podle zcela nedávných měření supernov a
nezávislých měření reliktního záření sondou WMAP se vesmír nejspíše bude
rozpínat navždy, a to dokonce čím dál tím rychleji. Žádný závěrečný
velký krach tedy naše potomky nejspíše nečeká.
Vás ale pravděpodobně více zajímá problém, jak se může z bezčasí a
bezprostoří vynořit reálný vesmír obdařený jednou časovou a několika
prostorovými rozměry. To je samozřejmě těžká otázka a v rámci našich
obvyklých představ o světě zní velmi paradoxně. Na druhou stranu,
fyzikové si už dávno zvyklí, že některé věci a procesy na první pohled
paradoxní jsou ve skutečnosti možné, ba dokonce zcela běžné, a to
především v mikrosvětě. Například miniaturní objekt se může
"nacházet" na mnoha místech současně, může se někdy projevovat jako vlna a jindy
naopak jako částice atd. Pomocí kvantové teorie je přitom možné tyto
jevy dobře popsat a studovat (i když, pravda, asi ne beze zbytku
"pochopit" obvyklým uvažováním).
A právě existence kvantových efektů chování prostoru a času v těch
naprosto nejmenších měřítkách je všeobecně považována za možnou cestu,
jíž by se někdy v budoucnu mohlo vědcům podařit objasnit vznik časového
vesmíru z "bezčasí". Věc je ale prozatím nejistá, neboť dosud nebyla
vytvořena konzistentní kvantová teorie prostoročasu, neboli dosud nemáme
kvantovou teorii gravitace.
Dotaz: Jaké jsou podmínky v ergosféře? Může tam existovat nějaká hmota? (Šarlota)
Odpověď: Ergosféra je oblast blízko horizontu černé díry. Přesněji řečeno je
ergosféra "zdola" ohraničená horizontem a "shora" tzv.
plochou statické limity, což je místo, pod nímž žádný pozorovatel (či fyzikální částice) nemůže zůstávat v klidu vůči vzdáleným pozorovatelům. Tato oblast je tím větší, čím víc černá díra rotuje (tj. čím větší má moment hybnosti).
V ergosféře je vše vlivem gravitace rotující černé díry strháváno do
společné rotace. Tento efekt neexistuje v klasické (Newtonově) teorii
gravitace, ale je přirozeným důsledkem Einsteinovy teorie, již je pro
správný popis silného gravitačního pole černých der nutno použít.
Oblast ergosféry má i další důležité vlastnosti z hlediska fyziky
černých děr. Například je v principu možné v této oblasti urychlovat
částice a dodávat jim energii na úkor rotační energie černé díry, která
se tak postupně zpomaluje. Hmotné částice tedy mohou v ergosféře existovat.