Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 125 dotazů obsahujících »fyzikální«
57) Vznik vesmíru
04. 01. 2004
Dotaz: Bigbangová teorie mimo jiné také říká, že je zbytečné zabývat se tím, co bylo
před velkým třeskem, protože nebyl čas. Podle mě si ale odporuje bigbangová
teorie vzniku vesmíru s tím, že se vesmír neustále rozpíná a pak zase
smršťuje. To by znamenalo, že nějaká hmota vybuchla, začala se rozpínat, a
začal plynout čas. Potom by gravitační síly převážily nad silou, kterou
vytvořil výbuch a urychlil hmotu, a vesmír by se začal postupně smršťovat.
Čím dál tím rychleji, až by se smrštil do malého objemu a nebyl by čas
(nekonečně hmotné těleso, podle teorie relativity nekonečně pomalé plynutí
času), potom by to teda zase bouchlo a čas by zase byl? Problém je v tom, že
když by čas v tu chvíli kdy je vesmír nejmenší nebyl, tak by nebyl po
nekonečné dlouhou dobu, takže už by nikdy nebylo nic...
Díky za odpověď.
(Antonin Kus)
Odpověď: Dobrý den!
Teorie velkého třesku jistě nezakazuje ptát se, co bylo na "počátku
existence" (námi pozorovaného) vesmíru. Problém spočívá spíše v tom, že
na základě současných obecně přijímaných fyzikálních teorii nelze na
takovou otázku seriózně odpovědět. Anebo ještě přesněji: existují různé
obecné návrhy, ale všeobecná shoda nepanuje a popravdě řečeno zatím ani
panovat nemůže.
Také se nyní spíše zdá, že ve skutečnosti NEŽIJEME v "oscilujícím"
vesmíru, na jehož počátku byl velký třesk, který se nyní rozpíná, pak se
jeho rozpínání zastaví, začne se opět smršťovat až vše skončí ve velké
singularitě, velkém krachu. Podle zcela nedávných měření supernov a
nezávislých měření reliktního záření sondou WMAP se vesmír nejspíše bude
rozpínat navždy, a to dokonce čím dál tím rychleji. Žádný závěrečný
velký krach tedy naše potomky nejspíše nečeká.
Vás ale pravděpodobně více zajímá problém, jak se může z bezčasí a
bezprostoří vynořit reálný vesmír obdařený jednou časovou a několika
prostorovými rozměry. To je samozřejmě těžká otázka a v rámci našich
obvyklých představ o světě zní velmi paradoxně. Na druhou stranu,
fyzikové si už dávno zvyklí, že některé věci a procesy na první pohled
paradoxní jsou ve skutečnosti možné, ba dokonce zcela běžné, a to
především v mikrosvětě. Například miniaturní objekt se může
"nacházet" na mnoha místech současně, může se někdy projevovat jako vlna a jindy
naopak jako částice atd. Pomocí kvantové teorie je přitom možné tyto
jevy dobře popsat a studovat (i když, pravda, asi ne beze zbytku
"pochopit" obvyklým uvažováním).
A právě existence kvantových efektů chování prostoru a času v těch
naprosto nejmenších měřítkách je všeobecně považována za možnou cestu,
jíž by se někdy v budoucnu mohlo vědcům podařit objasnit vznik časového
vesmíru z "bezčasí". Věc je ale prozatím nejistá, neboť dosud nebyla
vytvořena konzistentní kvantová teorie prostoročasu, neboli dosud nemáme
kvantovou teorii gravitace.
Dotaz: Jaké jsou podmínky v ergosféře? Může tam existovat nějaká hmota? (Šarlota)
Odpověď: Ergosféra je oblast blízko horizontu černé díry. Přesněji řečeno je
ergosféra "zdola" ohraničená horizontem a "shora" tzv.
plochou statické limity, což je místo, pod nímž žádný pozorovatel (či fyzikální částice) nemůže zůstávat v klidu vůči vzdáleným pozorovatelům. Tato oblast je tím větší, čím víc černá díra rotuje (tj. čím větší má moment hybnosti).
V ergosféře je vše vlivem gravitace rotující černé díry strháváno do
společné rotace. Tento efekt neexistuje v klasické (Newtonově) teorii
gravitace, ale je přirozeným důsledkem Einsteinovy teorie, již je pro
správný popis silného gravitačního pole černých der nutno použít.
Oblast ergosféry má i další důležité vlastnosti z hlediska fyziky
černých děr. Například je v principu možné v této oblasti urychlovat
částice a dodávat jim energii na úkor rotační energie černé díry, která
se tak postupně zpomaluje. Hmotné částice tedy mohou v ergosféře existovat.
Dotaz: Dobrý den, v žádné z mfch tabulek, které mám k dispozici, jsem nenašel nějaké
postižení závislosti hustoty vody na teplotě. Existuje pro ni nějaký vztah?
Děkuji. (Nikola Karafiát)
Odpověď: Spíš než vztah je třeba najít dobré tabulky. Všechny fyzikální
vlastnosti vody jsou velmi podrobně popsány, protože se mj. potřebují
široce v průmyslu. Podívejte se např. v Technické knihovně. Hustota vody
(zejména pak její anomálie při 3,98 oC je zdokumentována velmi důkladně.
Dotaz: "Bílý hluk" - pojem vztahující se k rušení hluku nepříjemného hlukem
příjemným. Otázka zní: Existuje nějaká fyzikální možnost jak rušit hluk?
Anebo alespoň jak bez nákladných stavebních úprav se vypořádat s touto
problematikou, například i generátorem "bílého hluku". Kde mohu najít více
informací? (Ing. Vlasta Čudanová)
Odpověď: Rušením hluku se zde zřejmě má na mysli "maskovací efekt", kdy
příjemným silnějším zvukem (asi o 10 dB) maskuje nepříjemné
zvuky slabší. Maskovací účinek je nejvyšší v okolí frekvencí
maskujících tónů a je odlišný pro čisté tóny a širokopásmové zvuky.
"Bílým hlukem" se zřejmě rozumí pojem "bílý šum". Jedná se o časově
stabilní signál (zvuk), obsahující harmonické frekvence v
celé oblasti slyšitelného spektra. Při matematickém modelování se
signál bílého šumu generuje pomocí generátoru náhodných čísel. V
analogových přístrojích se získává zesílením šumových napětí
elektronických prvků, které jsou důsledkem jejich tepelného namání.
Jená se o vcelku nepříjemný zvuk, který pro maskování
jiných nepříjemných zvuků není vhodný.
Literatura: Vaňková M. a kol.: Hluk, vibrace a ionizující záření v
životním prostředí. PC- DIR spol. s r.o., Brno, 1995. ISBN
80-214-0695-X
Dotaz: Rád bych se dozvěděl správnou odpověď na následující otázku. Jakou sílu
vynakládam, když pomocí kladky zvedám nějaký předmět a jakou sílu vynakládám,
když pomocí kladky zvedám sám sebe? Děkuji! (Petr)
Odpověď: Pokud máte na mysli jednoduchou kladku, tak při zvedání tělesa si fyzikální
práci neulehčíte. Zvedáte celou tíhu tělesa, výhoda je jen ve směru, kterým
působíte - člověku se přece jen snáze tahá za provaz, než když má s kbelíkem
malty vyběhnout do třetího patra.
Stejné je to, pokud byste chtěl vytáhnout sám sebe.
Mohl byste se přivázat na jeden konec lana a tahat za ten volný (pokud to
budete zkoušet,
nepřivazujte se za nohy - mohl byste skončit v nemocnici s rozbitou hlavou).
Ale nebude to vůbec jednoduché - budete muset po laně vlastně šplhat,
tedy zvedat sám sebe. Ovšem mohlo by se to hodit například v extrémní situaci,
když spadnete do ledovcové trhliny, váš partner je sice technicky schopný,
ale ne moc silný. Trivální varianta, že vylezete po laně sám, je docela
nešikovná. Když vám ale partner nahoře naaranžuje kladku třeba na druhé lano,
tak sám sebe vytáhnete asi nejsnadněji a nejrychleji...
Pokud byste použil kladku volnou, případně kladkostroj, tak už si fyzickou
práci ušetříte. Fyzikálně je ovšem vykonaná práce stále stejně velká.
Taháte sice delší kus lana, ale díky tomu můžete působit menší silou.
U každé kladky je také důležité,
aby měla dostatečně velké tření. Prokluzování provazu by v tomto případě bylo
hodně nežádoucí.