Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 365 dotazů obsahujících »jev«
211) Fotony a elektromagnetické záření
06. 01. 2004
Dotaz: Světlo má duální charakter - jeho nositelem je jak foton, tak elektromagnetické záření. Vlnová dálka el.mag. záření které považujeme za viditelné světlo, se pohybuje v rozmezí 700nm - 400nm. Rád bych se zeptal:
1) pokud bych dokázal vysílat na frekvenci o vlnové délce řekněme 500nm, svítila by anténa vysílače?
2) pokud ano, kde by se vzaly fotony? Vždyť jen vysílám el.mag. záření.
3) existuje foton i pro el.mag. záření které má nižší nebo vyšší vlnovou délku než viditelné světlo a to i třeba o několik řádů?
Děkuji (Tomáš Trojan)
Odpověď: 1) Pokud bys takový vysílač dokázal sestrojit, tak by zcela jistě svítil.
Problém je v tom, že nikdo takovou anténu vyrobit neumí, a to zejména
proto, že vlnová délka vysílaného záření odpovídá rozměrům vysílače.
2) Otázka "kde se v el.-mag. vlnění vezmou fotony" je zcela přirozená ale
nikdo na ní neumí uspokojivě a jasně odpovědět. Jde o pochopení toho,
čemu říkáme vlnově-částicová dualita. Bohužel (či bohudík?) pravda je
taková, že názornou představu opírající se o nějakou běžnou zkušenost si v
tomto případě udělat nejspíš nelze. Fyzikové se s tímto vyrovnávají
většinou tak, že připustí, že elektromagnetické záření se může projevovat
jako vlnění i jako tok energetických kvant (fotonů). V některých situacích
(např. při interferneci či ohybu) se projeví vlnové vlastnosti, v jiných
(fotoefekt) zase částicové. Na otázku, zda je to teď zrovna vlna nebo
částice, také odpovedět nelze. Záření má totiž obě vlastnosti současně a
je to pouze naše interpretace, že ho jednou vidíme jako vlnu a jindy jako
částice.
3) Fotony pochopitelně existují pro záření všech vlnových délek.
Pochopitelně proto, že teorie, která by tak fundamentální věc jako
kvantování el.-mag. vln připouštěla jen pro nějaký konkrétní interval
vlnových délek, by byla přinejmenším podivná. Viditelné světlo se od
el.-mag. záření jiných vlnových délek skutečně ničím neliší.
Energie jednoho fotonu závisí na vlnové délce (určitě znáš vzorec E = hf =
hc/λ). Čili čím kratší vlnová délka, tím energičtější (říká se
také tvrdší) fotony. Takové fotony se budou projevovat velmi znatelně.
Naproti tomu fotony odpovídající např. rádiovým vlnám budou tak měkké, že
jen obtížně vymyslíme nějaký experiment, při kterém se "částicovost"
záření projeví. Můžeš si snadno spočítat jejich energii a porovnat jí
třeba s typickou energií chemických reakcí na jednu molekulu.
Dotaz: Dobrý den, trochu jsem se zajímal o kvantovou fyziku a dočetl jsem se, že čas
podle kvantové fyziky neni spojitý, ale diskrétní. Mohli byste mi prosím
objasnit, co to znamená? Zatím jsem nikde nenašel vhodnou odpověď. (Honza)
Odpověď: V základní podobě kvantové teorie je čas spojitým parametrem, podobně jako
prostor, a tato teorie popisuje spoustu jevů přírody. Na druhé straně
fyzici skoro nikdy nejsou uspokojeni existujícími teoriemi a hledají
další, takže jsou samozřejmě i úvahy o diskrétním časoprostoru, viz
odpověď z 4. 11. 2003 "Kvantování prostoru a času".
Dotaz: Bigbangová teorie mimo jiné také říká, že je zbytečné zabývat se tím, co bylo
před velkým třeskem, protože nebyl čas. Podle mě si ale odporuje bigbangová
teorie vzniku vesmíru s tím, že se vesmír neustále rozpíná a pak zase
smršťuje. To by znamenalo, že nějaká hmota vybuchla, začala se rozpínat, a
začal plynout čas. Potom by gravitační síly převážily nad silou, kterou
vytvořil výbuch a urychlil hmotu, a vesmír by se začal postupně smršťovat.
Čím dál tím rychleji, až by se smrštil do malého objemu a nebyl by čas
(nekonečně hmotné těleso, podle teorie relativity nekonečně pomalé plynutí
času), potom by to teda zase bouchlo a čas by zase byl? Problém je v tom, že
když by čas v tu chvíli kdy je vesmír nejmenší nebyl, tak by nebyl po
nekonečné dlouhou dobu, takže už by nikdy nebylo nic...
Díky za odpověď.
(Antonin Kus)
Odpověď: Dobrý den!
Teorie velkého třesku jistě nezakazuje ptát se, co bylo na "počátku
existence" (námi pozorovaného) vesmíru. Problém spočívá spíše v tom, že
na základě současných obecně přijímaných fyzikálních teorii nelze na
takovou otázku seriózně odpovědět. Anebo ještě přesněji: existují různé
obecné návrhy, ale všeobecná shoda nepanuje a popravdě řečeno zatím ani
panovat nemůže.
Také se nyní spíše zdá, že ve skutečnosti NEŽIJEME v "oscilujícím"
vesmíru, na jehož počátku byl velký třesk, který se nyní rozpíná, pak se
jeho rozpínání zastaví, začne se opět smršťovat až vše skončí ve velké
singularitě, velkém krachu. Podle zcela nedávných měření supernov a
nezávislých měření reliktního záření sondou WMAP se vesmír nejspíše bude
rozpínat navždy, a to dokonce čím dál tím rychleji. Žádný závěrečný
velký krach tedy naše potomky nejspíše nečeká.
Vás ale pravděpodobně více zajímá problém, jak se může z bezčasí a
bezprostoří vynořit reálný vesmír obdařený jednou časovou a několika
prostorovými rozměry. To je samozřejmě těžká otázka a v rámci našich
obvyklých představ o světě zní velmi paradoxně. Na druhou stranu,
fyzikové si už dávno zvyklí, že některé věci a procesy na první pohled
paradoxní jsou ve skutečnosti možné, ba dokonce zcela běžné, a to
především v mikrosvětě. Například miniaturní objekt se může
"nacházet" na mnoha místech současně, může se někdy projevovat jako vlna a jindy
naopak jako částice atd. Pomocí kvantové teorie je přitom možné tyto
jevy dobře popsat a studovat (i když, pravda, asi ne beze zbytku
"pochopit" obvyklým uvažováním).
A právě existence kvantových efektů chování prostoru a času v těch
naprosto nejmenších měřítkách je všeobecně považována za možnou cestu,
jíž by se někdy v budoucnu mohlo vědcům podařit objasnit vznik časového
vesmíru z "bezčasí". Věc je ale prozatím nejistá, neboť dosud nebyla
vytvořena konzistentní kvantová teorie prostoročasu, neboli dosud nemáme
kvantovou teorii gravitace.
Dotaz: Chtěla jsem se zeptat, do kdy magnet zůstává magnetem, když ho
lámeme. Resp.kdy ten magnet přestane být magnetem, kdybychom jej pomyslně
donekonečna lámali. (Petra Černohorská)
Odpověď: Permanentní magnet opravdu můžete lámat na velmi malé kousky. Dokonce se
vyráběly magnety z prachových částic orientovaných v magnetickém poli a
zafixovaných v nějakém tmelu. Feromagnetické částice o rozměrech mikrometrů
a menších jsou jednodomenové a jejich přemagnetování je obtížnější než u
větší vicedoménových částic a tak dá se dosáhnout větších koercitivních
polí, což je podmínka pro dlouhodobou stálost permanentního magnetu.
Kvalitní permanentní magnet musí mít i vysokou hodnotu remanentní
magnetizace, případně součinu (BH)max ale to už je otázka složení materiálu
a jeho struktury.
V posledním desetiletí se studují tzv. Klastry (clusters), shluky od
desítek do tisíců atomů přechodových prvků, které projevují mimořádné
magnetické vlastnosti.
Další informace naleznete např. v kap. 15 knihy Ch. Kittel: Úvod do fyziky
pevných látek, Academia Praha 1985.
Dotaz: Dobrý den, posílám Vám dotaz, na který už dlouho hledám odpověď, žádné
dokonale uspokojivé se mi však zatím nedostalo. Týká se jiskrového výboje
elektrického proudu (v atmosféře tak často pozorovaného v podobě blesku).
Může dojít k tomuto výboji v absolutním vakuu? Je tento jev podmíněn
přítomností částic plynu? Předem děkuji za odpověď. (Martin Čurda)
Odpověď: Jiskrový výboj v podobě blesku je v podstatě tvořen „chomáčkem“ či kanálem vysoce rozžhaveného plazmatu. V centrech kanálů atmosférických blesků při bouřkách dosahuje teplota 20-30 tisíc kelvinů. V tomto smyslu přirozeně nelze uvažovat o blescích ve vakuu.