FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 365 dotazů obsahujících »jev«

213) Vznik vesmíru04. 01. 2004

Dotaz: Bigbangová teorie mimo jiné také říká, že je zbytečné zabývat se tím, co bylo před velkým třeskem, protože nebyl čas. Podle mě si ale odporuje bigbangová teorie vzniku vesmíru s tím, že se vesmír neustále rozpíná a pak zase smršťuje. To by znamenalo, že nějaká hmota vybuchla, začala se rozpínat, a začal plynout čas. Potom by gravitační síly převážily nad silou, kterou vytvořil výbuch a urychlil hmotu, a vesmír by se začal postupně smršťovat. Čím dál tím rychleji, až by se smrštil do malého objemu a nebyl by čas (nekonečně hmotné těleso, podle teorie relativity nekonečně pomalé plynutí času), potom by to teda zase bouchlo a čas by zase byl? Problém je v tom, že když by čas v tu chvíli kdy je vesmír nejmenší nebyl, tak by nebyl po nekonečné dlouhou dobu, takže už by nikdy nebylo nic... Díky za odpověď. (Antonin Kus)

Odpověď: Dobrý den!
Teorie velkého třesku jistě nezakazuje ptát se, co bylo na "počátku existence" (námi pozorovaného) vesmíru. Problém spočívá spíše v tom, že na základě současných obecně přijímaných fyzikálních teorii nelze na takovou otázku seriózně odpovědět. Anebo ještě přesněji: existují různé obecné návrhy, ale všeobecná shoda nepanuje a popravdě řečeno zatím ani panovat nemůže.
Také se nyní spíše zdá, že ve skutečnosti NEŽIJEME v "oscilujícím" vesmíru, na jehož počátku byl velký třesk, který se nyní rozpíná, pak se jeho rozpínání zastaví, začne se opět smršťovat až vše skončí ve velké singularitě, velkém krachu. Podle zcela nedávných měření supernov a nezávislých měření reliktního záření sondou WMAP se vesmír nejspíše bude rozpínat navždy, a to dokonce čím dál tím rychleji. Žádný závěrečný velký krach tedy naše potomky nejspíše nečeká.
Vás ale pravděpodobně více zajímá problém, jak se může z bezčasí a bezprostoří vynořit reálný vesmír obdařený jednou časovou a několika prostorovými rozměry. To je samozřejmě těžká otázka a v rámci našich obvyklých představ o světě zní velmi paradoxně. Na druhou stranu, fyzikové si už dávno zvyklí, že některé věci a procesy na první pohled paradoxní jsou ve skutečnosti možné, ba dokonce zcela běžné, a to především v mikrosvětě. Například miniaturní objekt se může "nacházet" na mnoha místech současně, může se někdy projevovat jako vlna a jindy naopak jako částice atd. Pomocí kvantové teorie je přitom možné tyto jevy dobře popsat a studovat (i když, pravda, asi ne beze zbytku "pochopit" obvyklým uvažováním).
A právě existence kvantových efektů chování prostoru a času v těch naprosto nejmenších měřítkách je všeobecně považována za možnou cestu, jíž by se někdy v budoucnu mohlo vědcům podařit objasnit vznik časového vesmíru z "bezčasí". Věc je ale prozatím nejistá, neboť dosud nebyla vytvořena konzistentní kvantová teorie prostoročasu, neboli dosud nemáme kvantovou teorii gravitace.
(Doc. RNDr. Jiří Podolský, CSc.)   >>>  

214) Jak malý může být magnet?04. 01. 2004

Dotaz: Chtěla jsem se zeptat, do kdy magnet zůstává magnetem, když ho lámeme. Resp.kdy ten magnet přestane být magnetem, kdybychom jej pomyslně donekonečna lámali. (Petra Černohorská)

Odpověď: Permanentní magnet opravdu můžete lámat na velmi malé kousky. Dokonce se vyráběly magnety z prachových částic orientovaných v magnetickém poli a zafixovaných v nějakém tmelu. Feromagnetické částice o rozměrech mikrometrů a menších jsou jednodomenové a jejich přemagnetování je obtížnější než u větší vicedoménových částic a tak dá se dosáhnout větších koercitivních polí, což je podmínka pro dlouhodobou stálost permanentního magnetu. Kvalitní permanentní magnet musí mít i vysokou hodnotu remanentní magnetizace, případně součinu (BH)max ale to už je otázka složení materiálu a jeho struktury.
V posledním desetiletí se studují tzv. Klastry (clusters), shluky od desítek do tisíců atomů přechodových prvků, které projevují mimořádné magnetické vlastnosti.
Další informace naleznete např. v kap. 15 knihy Ch. Kittel: Úvod do fyziky pevných látek, Academia Praha 1985.
(Doc. RNDr. Miloš Rotter, CSc.)   >>>  

215) Jsou ve vakuu blesky?04. 01. 2004

Dotaz: Dobrý den, posílám Vám dotaz, na který už dlouho hledám odpověď, žádné dokonale uspokojivé se mi však zatím nedostalo. Týká se jiskrového výboje elektrického proudu (v atmosféře tak často pozorovaného v podobě blesku). Může dojít k tomuto výboji v absolutním vakuu? Je tento jev podmíněn přítomností částic plynu? Předem děkuji za odpověď. (Martin Čurda)

Odpověď: Jiskrový výboj v podobě blesku je v podstatě tvořen „chomáčkem“ či kanálem vysoce rozžhaveného plazmatu. V centrech kanálů atmosférických blesků při bouřkách dosahuje teplota 20-30 tisíc kelvinů. V tomto smyslu přirozeně nelze uvažovat o blescích ve vakuu.
(Doc. RNDr. Josef. Brechler, DrSc.)   >>>  

216) Tvar duhy04. 01. 2004

Dotaz: Chtěl bych se zeptat, proč se duha na oblohu promítá jako kružnice a jak je to s její výškou nad horizontem během dne. Děkuji (Karel Zíval)

Odpověď: Na připojeném obrázku je kružnicí znázorněn řez kulovou kapkou obsahující její střed. Tímto středem prochází osa x položená do směru dopadajícího svazku rovnoběžných slunečních paprsků. Z tohoto svazku je zakreslen jeden paprsek, jenž na kapku dopadá s úhlem dopadu α, lomí se dovnitř kapky (úhel lomu β) podstupuje jeden vnitřní odraz a posléze se lomí z kapky ven. Úhel, který svírá vystupující paprsek se směrem původně dopadajících paprsků, je označen δ. Jev duhy působí ty paprsky, které splňují podmínku minimální odchylky, tj. pro něž ve funkční závislosti úhlu na úhlu existuje lokální minimum. Předpokládejme, že náš zakreslený paprsek právě splňuje tuto podmínku. Promítneme-li si stopu paprsku vystupujícího z kapky zpětně na nebeskou klenbu dostaneme zde světelný bod. Vzhledem k tomu, že při lomu paprsku dovnitř a ven z kapky dochází k disperzi světla, bude tento světelný bod rozložen do spektra barev. Od našeho plošného řezu k prostorovému obrazu dospějeme tak, že provedeme rotaci dle zakreslené osy x. Zmíněná zpětná stopa vystupujícího paprsku pak opíše po nebeské klenbě oblouk duhy. Nejvyšší bod má úhlovou výšku nad ideálním obzorem 42-α , když α je úhlová výška Slunce nad obzorem.
Uvedený výklad se týká tzv. hlavní (primární) duhy. Duhy vyšších řádů pak dostaneme při vícenásobných vnitřních odrazech paprsků v kapkách.

Literatura: Bednář J.: Pozoruhodné jevy v atmosféře. Academia, Praha, 1989
                   Bednář J.: Meteorologie, Portál, Praha, 2003

(Doc. RNDr. Josef Brechler, DrSc.)   >>>  

217) Současnost09. 12. 2003

Dotaz: Zajímalo by mě, ja je definovám pojem současnosti. Teoreticky se dá zjistit jestli se dvě události odehrály na dvou místech současně, podle toho, že hodiny v obou místech ukazují stejný čas. Podle mě je jediný racionální způsob jejich nastavení tento: Z bodu A je vyslán světelný signál, který je, když dorazí k bodu B vrácen zpět. Vzdálenost A->B je c*1/2t (t=doba mezi odesláním a vrácením signálu, měřená v bodě A) hodiny budou nastaveny správně tehdy, když v okamžiku příchodu signálu do B budou hodiny B ukazovat čas rovný polovině součtu časů zaznamen. v A v okamžiku odeslání a přijmutí signálu. Tyto hodiny umístěné na nějakém tělese nám dávají vztažný systém pro určení současnosti. (Z pohledu A nebo B budou ty druhé odděleny nulovým časovým intervalem) Jenomže ze základních principů teorie relativity vyplývá, že z pohledu jiných pozorovatelů budou odděleny intervalem nenulovým. To by ale podle mě znamenalo, že pojem současnost nemá jako takový smysl. Nemám někde chybnou úvahu? (Tomáš Vaníček)

Odpověď: Pojem současnosti v rámci jedné inerciální vztažné soustavy (dále jen IS) smysl má. V této soustavě plyne všude stejný čas. Rozdíl proti klasické mechanice spočívá pouze v tom, že tento čas není pro všechny IS stejný.
Úvahy s hodinami je třeba dělat opatrně. Do počátku naší IS můžeme napevno umístit jedny hodiny a ty opravdu budou ukazovat čas této IS. Do nějakého jiného bodu můžeme umístit jiné hodiny a s těmi v počátku je seřídit tebou navrženou metodou. Pak budou i tyto hodiny ukazovat čas v naší IS. Nesmíme s těmito hodinami ale pohybovat, pak totiž přestanou ukazovat čas IS ale svůj tzv. vlastní čas a to je rozdíl!
Posoudit současnost jevů můžeme následovně. Posadíme pozorovatele do počátku IS, ve které současnost posuzujeme (ano, zda jevy budou nebo nebudou současné závisí na IS, ze které je pozorujeme). Jev který nastal v bodě A a pozorovatel v počátku ho zpozoroval v čase T a zřejmě nastal v čase T a - |OA|/c (|OA| značí vzdálenost počátku a bodu A v soustavě IS). Takto zjištěný čas pak použijeme ke stanovení současnosti dvou nebo více jevů. Polohu bodů, ve kterých pozorované jevy nastaly, musíme znát (lze ji stanovit např. pomocí dokonale tuhých tyčí).
(Jan Houštěk)   >>>