Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 365 dotazů obsahujících »jev«
231) Elektrická pevnost
21. 10. 2003
Dotaz: Chcela by som vás poprosiť o nejaké informácie týkajúce sa elektrickej
pevnosti. Ďakujem (Evka)
Odpověď: Elektrická pevnost je zavedena jako schopnost izolantů bránit
průchodu náboje (odolávat namáhání elektrickým polem). Její velikost
udává hodnotu intenzity elektrického
pole, při které se uvolní elektrony vázané v izolantu a ten se stane vodičem.
Tomuto jevu říkáme průraz a s ním spojená hodnota napětí Ubr se
nazývá průrazné napětí.
Jednotkou elektrické pevnosti je V/m, často se setkáme s jednotkou kV/cm
nebo kV/mm. Na mnoha elektronických součástkách je uváděna elektrická pevnost
v kV/1 minutu. Znamená to, že k průrazu dojde až po minutovém působení uvedeného
napětí.
Elektrická pevnost izolantu závisí na jeho chemické čistotě, znečištění povrchu, mechanickém
namáhání, teplotě tlaku a vlhkosti prostředí, ve kterém se izolant nachází.
Důležité je také geometrické uspořádání izolantu a elektrod, mezi než izolant vložíme.
Např. elektrická pevnost slídy je 55-75 kV/mm, keramických izolantů
20-35 kV/mm, transformátorového oleje 200 kV/cm.
Dotaz: Slyšel jsem o částici ný, která nemá ani náboj ani hmotu, ale je to částice a
nějak se projevuje - jak a čím se toto nic projevuje? (Marek)
Odpověď: Částice zvaná neutrino (značí se právě řeckým písmenkem 'ný') skutečně
existuje, má nulový náboj, ale podle posledních experimentů to vypadá, že
malou hmotu přece jen má, i když asi miliónkrát menší než elektron (a ten
je asi 2000x lehčí než proton!).
Jak se taková částice projevuje, je samozřejmě dobrá a zajímavá otázka.
Protože nemá náboj, nereaguje na elektromagnetické síly, a tak nemůže
ionozovat a zanechat stopu třeba v mlžné komoře nebo dát puls v
Geiger-Mullerově počítači. "Cítí" však tzv. slabou interakci, která
je zodpovědná např. za některé radioaktivní rozpady a uplatňuje se i při
hoření Sluníčka. Tak trochu obrazně lze říci, že si neutrino s elektronem
můžou "prohodit" neutrální částici Z0 a elektron tak může být
vyšťouchnut, a když bude mít dost energie, už jej můžeme pozorovat, jak vyletí,
i když nepozorujeme žádnou dráhu nějaké částice, která do něj narazila. To je
"podpis" neutrina v takovémto procesu. Dále může neutrino způsobit
opačný beta rozpad: antineutrino + proton -> neutron + pozitron (obvykle proton->
neutron+pozitron+neutrono nebo neutron-> proton + elektron +
antineutrino). Takto bylo poprvé i pozorováno v letech 1953-6 (ve
skutečnosti byla objevena antineutrina:).
Neutrina se dále dělí na elektronové, mionové a tauonové, liší se tím, s
kterým z nich vystupují společně v reakcích.
Mimochodem, za neutrina byla udělena i loňská Nobelova cena za fyziku -
viz
http://www-hep2.fzu.cz/Centrum/semin/nobel02.pdf, kde také naleznete
další užitečné informace.
Dotaz: Mám následující problém: Při pohánění dynama (např. při šlapání na kole)
spotřebovávám el. energii vygenerovanou z mechanické práce na svícení
žárovky. Co se stane s energií, přestřihnu-li dráty el. vedení. Permanentním
magnetem v dynamu otáčím stále. Mám dvě možná vysvětlení: 1. Dodávaná
mechanická práce bude menší (dynamem půjde snáze otáčet - což se mi ale
nejeví správně) 2. V cívce se nebude indukovat napětí a intenzita
magnetického pole vně dynama bude větší, než v případě, kdy odebírám proud.
Je jedna z těchto možností správná, nebo je to úplně jinak? (Vaclav)
Odpověď: Když přestřihnete dráty, neodvádíte elektrickou energii z dynama, takže
vaše vysvětlení 1. je správné - dynamem jde opravdu snadněji otáčet,
dodáváte jen práci na tření a další ztráty. Zkuste si to, extrémní případ
je to, když místo žárovky spojíte vývody dynama nakrátko (tj. hřejete
dynamo a dráty). Opravdu se to pozná, navíc takhle máte k dispozici
elektromagnetickou brzdu...
Dotaz: V poslední době se řada vědeckých institucí zcela seriózně
zabývá tzv. temnou energií, která má na svědomí zrychlující se rozpínání
vesmíru. Viz např. http://www.aip.org/mgr/png/2003/200.htm . Ve standardním
modelu se vesmír může rozpínat nanejvýš konstantní rychlostí, nebo
zpomalovat. Rád bych se zeptal, co se tou temnou energií vlastně myslí, je to
pátá interakce, kteá se projevuje odpuzováním hmoty, ale je významná až v
kosmologických vzdálenostech, nebo samotná vlastnost prostoročasu
(fyzikálního vakua) , nebo co vlastně? Mimochodem, dalo by se zrychlené
rozpínání vesmíru vysvětlit tím, že vesmír jako celek by měl nenulový
elektrický náboj ? (Slavibor Mělnický)
Odpověď: Podle posledních měření opravdu "temná energie" ve vesmíru existuje a
dokonce v současné době dominuje (tvoří asi 73% "hmotného" obsahu
vesmíru). Popravdě řečeno, nikdo prozatím neví, co přesně tato temná
energie je a jak vzniká. Existují pouze různé hypotézy.
Na formální úrovni lze efekt temné hmoty na rozpínání vesmíru dobře
popsat přítomností tzv. (kladné) kosmologické konstanty, kterou do svých
rovnic obecné teorie relativity zavedl již r. 1916 Albert Einstein
(později nutnost zavedení kosmologické konstanty sám zpochybnil, ale jak
je dnes vidět, i zde měl správnou intuici...) Její vliv lze
interpretovat jako "dodatečnou antigravitaci", tedy gravitační
odpuzování, které je ovšem významné až na velkých kosmologických
vzdálenostech (např. ve sluneční soustavě lze její vliv zanedbat)
Všeobecně se ovšem soudí, že tato kladná "kosmologická konstanta" je ve
skutečnosti "efektivně vystředovaná" vlastnost nějakého kvantového pole,
tedy je důsledkem chování hmoty a polí na mikroskopické úrovni. K
objasnění temné hmoty tedy bude zapotřebí více rozpracovat teorie
částicové fyziky, superstrun a podobně.
Ve Vašich otázkách si tedy sám správně odpovídáte: formálně lze temnou
energii chápat jako gravitační odpuzování popsatelné specifickým
zakřivením prostoročasu. Detailněji se ovšem bude pravděpodobně jednat o
"makroskopický" efekt kvantových jevů vakua a polí na mikroskopické
úrovni. (Naproti tomu, rozhodně nelze temnou energii vysvětlit prostým
elektrickým odpuzováním).
Shodou okolností, této tématice se bude věnovat jedna z přednášek cyklu
o moderní fyzice, kterou organizujeme dne 13.11.: podrobnosti viz.
http://utf.mff.cuni.cz/popularizace/PMF/ .
Dotaz: K dotazu "Těleso v těžišti koule" z 23.9.2003: Pokud se gravitační síly v
těžišti hmotných objektů ruší a nevzniká žádný tlak, jaký princip způsobuje
vzrůst tlaku směrem k jádru např. u plynných obřích planet? Proč se může
gravitačně zhroutit objekt, který je pro tento jev dostatečně hmotný? (Milos Orlik)
Odpověď: "Pokud se gravitační síly v těžišti hmotných objektů ruší a nevzniká žádný
tlak, jaký princip způsobuje vzrustů tlaku směrem k jádru..."
V této větě je první tvrzení správné, ale druhé je už nesprávné. Gravitační
zrychlení (zrychlení volného pádu, pokud neuvažujeme odstředivé zrychlení v důsledku
rotace planety) směrem ke středu tělesa obecně klesá a v těžišti je nulové. Tato část úvahy
tazatele je tedy správná.
Odtud ovšem neplyne, že také tlak v těžišti tělesa bude nulový. Nulový bude
v těch místech pouze přírůstek tlaku, daný známým vzorcem
dp=rho.g.dh ,
kde rho je hustota, g tíhové (gravitační) zrychlení a dh přírůstek hloubky.
Protože g klesne v těžišti na nulu, bude tam nulový také přírůstek tlaku dp. Ovšem tlak v těžišti
tělesa bude součtem přírůstku tlaku od povrchu do centra (integrálem přes dp od povrchu do
centra), což samozřejmě není nula.
Zde najdete jednoduché odvození příslušných veličin např.
pro homogenní kouli.