FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 365 dotazů obsahujících »jev«

28) Plyn uniklý z raketoplánu03. 08. 2009

Dotaz: Dobrý den, Pokud ve vesmíru z raketoplánu unikne kyslík, co se s ním stane? Bude se snažit roznoměrně rozprostřít, nebo se bude shlukovat, či snad bude přitažen nejbližší planetou(její gravitací)? (Seth)

Odpověď: Odpověď závisí na mnoha parametrech (kde došlo k úniku, jaká je počáteční rychlost a tlak, teplota, směr úniku, ...). Jistě se zde ale projeví tyto skutečnosti:

Tlak plynu (chotické narážení molekul plynu na sebe navzájem) bude nutit plyn se rozptylovat do okolí. Čím více se rozptýlí, tím menší bude ale jeho tlak, takže rozptylování bude čím dál pomalejší.

Vlastní gravitační pole plynu by se naopak snažilo oblak plynu držet pohromatě. U plynu uniklého z raketoplánu (kterého bude maximálně několik desítek či stovek kilogramů) je to zcela zabedbatelný efekt, u obřích plynových (vodíkových) mračen vyskytujících se v mezihvězdném prostoru to ale už je významné.

Gravitační pole blízkých objektů (planety, měsíce, hvězda, ...) bude mít vliv.

Sluneční vítr (proud částic, který vychází ze Slunce) bude na plyn působit a může jej urychlovat směrem od Slunce.

Jak je z předchozího patrné, odhadnout nebo dokonce spočítat chování konkrétního uniklého plynu by nebylo vůbec jednoduché. Dovolím si však odhadnout, že ve většině případů možného úniku plynu z raketoplánu dojde buď k zbrždění plynu třením o horní vrstvy atmosféry a jeho "pád" dop atmosféry nebo se plyn rozptýlí po okolí a bude slunečním větrem postupně vytlačován ven ze Sluneční soustavy.

(Jakub Jermář)   >>>  

29) Vícerozměrné světy23. 04. 2009

Dotaz: Jak je to s více či méně rozměrnými prostory. Počítá se s tím, že je náš vesmír tvořený pouze třemi prostorovými rozměry a jedním časovým, nebo existuje nějaká možnost, že by náš prostor mohl být součástí nejakého čtyřrozměrného prostoru? Když čtu o 4D krychlích a o tom, že kdyby byla možná nějaká interakce mezi dvou a třírozměrným prostorem, viděli bychom zkrz 2D prostor, což ale přece nemůže být možné, protože takový prostor by byl snad nepozorovatelný právě kvůli jeho prostoroým omezením, ne? Nemůžeme přece vidět to, co nemá hloubku. Zpět k původnímu dotazu: Je možné, že náš rozměr je více rozměrný, jen tyto rozměry nemůžeme pozorovat? Protože kdyby bylo možné pozorovat ze 4D prostoru 3D prostor, bylo by možé pozorovat i z našeho světa 2D prostor. A kdyby bylo možné interagovat mezi vícerozměrnými prostory, v našem vesmíru by muselo přece docházet k mystickému úbytku hmoty (černé díry a Hawking tvrdící, že se informace/hmota přelívají z vesmíru do vesmíru?) Nebo je náš vesmír prostě třírozměrný a konec. K čemu potom jsou úvahy o více či méně rozměrném prostoru? Jen kvůli představě, jak by asi vypadaly či vypadají vesmíry s jiným počtem prostorových rozměrů? Co paralelní reality, pokud by existovali, nejsou tohle různé nakrájené vrstvy 4D prostoru, kde jedna z realit/linií je právě ten náš omezený svět, podobně jako krychle rozkrájená do 2D prostoru pochopitelná pro hypotetické 2D bytosti? Jak to shrnout, asi takhle: Je náš vesmír prolínající se svět se stupňujícím se počtem rozměrů, které jsou přímo tady, nebo je to výsada jiných vesmírů? Omlouvám se za velmi laický dotaz, ale tahle problematika mě fascinuje. (Petr Mišák)

Odpověď: Má odpověď asi nebude vyčerpávající ani úplně přesná, pokusím se ale přesto shrnout, jak vidím nastíněné dotazy po několika letech studia na MFF. V běžném životě bezproblému vystačíme s 3 rozměry prostoru a 1 rozměrem času. Při některých situacích (vysoké rychlosti, silná gravitační pole, ...) se ukazuje rozumnější tento model poupravit a pracovat s čtyřrozměrným prostorem (resp. varietou) - s prostoročasem neboli časoprostorem. Pakliže se pustíme ještě dále a budeme chtít budovat teorie popisující všechny známe inetrakce, ukazuje se, že by bylo vhodné počítat např. s desetirozměrným prostorem - ne snad proto, že bychom pozorovali další rozměry, ale pprostě proto, že nám to umožňuje "napsat ty správné rovnice". Tyto teorie zatím jsou spíše ve stádiu zrodu či testování, pokud by se ale ukázalo, že náš svět je ve smyslu těchto rovnic skutečně mnohorozměrný, budou nadbytečné rozměry (tj. ty nad námi vnímanými 3 + 1) ve skutečnosti svinuté na nepatrných škálách. Co to znamená? Představme si brčko (slámku, trubičku). Z dostatečné dálky (tedy z makroskopického pohledu) jde o jednorozměrný předmět mající pouze délku. Z blízka se ale jeví jako svinutá plocha, jde tedy o vícerozměrný objekt. Zmakroskopického hlediska tedy žijeme v našem 3+1 dimenzionálním světě, na opravdu malých (subatomárních, subjaderných) rozměrech to klidně může být komplikovanější a tedy v souladu s požadavky moderních teorií pracujících s desetirozměrným matematickým světem.

(Jakub Jermář)   >>>  

30) Perpetuum mobile a supratekuté hélium24. 03. 2009

Dotaz: Dobrý den, ve škole jsem se dozvěděl, že helium je poněkud zvláštní plyn v různých ohledech - při nízkých teplotách má nulovou viskozitu a prý se při škrcení neochlazuje, ale ohřívá a to mě přivedlo k myšlence, že pokud bychom vyměnili chladící médium v lednici za helium, pak by "topila" jak v kondenzátoru(teplo získané prací kompresoru), tak ve výparníku(teplo ze škrcení) a tím by se pak dosáhla účinnost vyšší jak 100% (o teplo, ze škrcení) -> samosebou, že to asi fungovat nebude a v téhle teorii bude jistě někde háček, ale potřeboval bych to nějak vyvrátit, abych nad tím přestal přemýšlet... (miroslav kabát)

Odpověď: Perpetua mobilea jsou vždy lákavá, příroda se jim však brání. Přesto to lidé stále zkoušejí.

Helium je skutečně "látka kouzelníků", jak jej někdo nazval. Za nízkých teplot se projeví jako kvantová kapalina a to zejména supratekutostí. Pod teplotou 2,17 K ztratí viskozitu, pokud ji sledujete z tečení tenkými kapilárami. Rychlost proudění nezávisí na rozdílu tlaku mezi oběma konci kapiláry. Platí to jen do jisté rychlosti, pak se kapalina chová opět jako vazká. Měříte-li viskozita ze silového momentu, kterým působí na rotující těleso, naměříte nenulovou viskozitu. K výkladu tohoto jevu se užívá model směsi normální a vazké kapaliny, jejíž podíl klesá s klesající teplotou. Rotující helium pod teplotou 2,17 K vytváří meniskus jako normální kapalina (což by jako kapalina bez tření = bez viskozity nemělo) a to díky vírům normální kapaliny, které kapalinou pronikají. Supratekuté helium vytváří na stěnách povrchový film, pomocí něhož teče i proti silám gravitace. Lze v něm vyvolat fontánu, která stříká jen díky přitápění do baňky uzavřené zátkou, kterou pronikne jen supratekutá složka.

Váš dotaz směřuje k Jouleovu - Thomsonovu jevu, který způsobuje změnu teploty plynu při expanzi do vakua, tedy nekoná-li práce tlačením na nějaký píst. Jde o práci molekul reálného plynu proti vnitřním silám, které působí mezi molekulami. Jev je závislý na teplotě plynu. Aby při expanzi docházelo k chlazení, musí být teplota plynu nižší než inverzní teplota, která je pro helium asi 42 K (pro kyslík 770 K). Pro účinné chlazení má být teplota alespoň třetinová. Helium se tedy za pokojové teploty při expanzi za škrtícím ventilem ohřívá. Ohřívá se taky při kompresi, jak to znáte z chladničky. Takhle získané teplo je přeměněno z příkonu kompresoru, obávám se, že účinnost nebude velká.

Účinnost nad 100%, samozřejmě bez uvážení všech přítoků energie, dává tepelné čerpadlo, které si bere teplo ze půdy, tekoucí vody nebo ze vzduchu a principiálně se podobá domácí chladničce. Zažil jsem jeho činnost a ujišťuji Vás, že se jím v zimě neohřejete.

(Doc. Miloš Rotter)   >>>  

31) Platí teorie relativity i ve tmě?25. 02. 2009

Dotaz: Asi to bude znít hloupě, ale na jednu věc si prostě nedokážu odpovědět. Když jsme probírali ve škole relativitu času, uváděli jsme si jako demonstraci "fyzikální vagón" jedoucí konstantní rychlostí. Venku stál pozorovatel a viděl, že světlo vyslané zprostřed vagónu dorazilo k jedné stěně dříve, než ke straně druhé, zatímco pozorovatelé ve vlaku tento jev nezaznamenali. Co mne zajímá, je to, jak by pokus vypadal ve tmě a bez vyslaného světla. Byl by čas na jedné straně vagónu pořád jiný, než na straně druhé? Dá se to nějak dokázat? Snad jsem se vyjádřila dosti srozumitelně. Budu vděčna, pokud mne odkážete na jakoukoli literaturu, či podáte jakékoli vlastní vysvětlení. (Isiik)

Odpověď: Žádný zvídavý dotaz není hloupý! Ale k věci: světlo a jeho šíření ve výše uvedeném případě není příčinou daného jevu (relativity současnosti a s tím související dilatace času), ale pouze nám umožňuje tento jev "mázorně" ukázat, představit si ho. Bez vyslaného světelného signálu by tedy pokus vypadal tak, že všude bude tma, ale jevy spjaté s teorií relativity budou nastávat.

Vhodným studijním materiálem může být třeba http://martin184.webpark.cz/trsprl.html.

(Jakub Jermář)   >>>  

32) Jemné a hyperjemné spektrum25. 02. 2009

Dotaz: Jak vznika jemne a hyperjemne spektrum (napr. u jodu I2)? (Shane)

Odpověď: Rozštěpení spektrálních čar (tzv. jemná struktura čar) vzniká vlivem relativistických jevů a vlivem interakce mezi spinovým a orbitálním momentem hybnosti elektronů (tzv. spinorbitální interakce). Hyperjemná struktura je pak důsledkem interakce magnetického momentu elektronu s magnetickým momentem jádra (I-J vazba).

(Jakub Jermář)   >>>