FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 365 dotazů obsahujících »jev«

326) "Tajemství" pyramidy04. 09. 2002

Dotaz: Pyramida je považová za akumulátor na výrobu univerzální energie. Ohnisko pyramidy, kde dochází k největší kumulaci univerzální energie je považována 1/3 její výšky. Chystám si zhotovit zlatou pyramidu, ale mám stále několik nevyřešených otázek a to jsou: 1.Je pravda, že k největší kumulaci energie dochází v 1/3 její výšky? 2.Jakým způsobem ovlivní šířka a druh materiálu plátu stěny pyramidy částice, které přes ní prochází? 3.Jakou mám zvolit šířku plátu(zlato), aby vydržela pád z cca 50cm a nepoškodila se? (Jan Achac)

Odpověď: Vážený pane, obávám se, že z hlediska svého fyzikálního pohledu na svět nevím, co znamená Vaše univerzální energie, jaké jsou její projevy, jak ji získávat a koncentrovat, a tak Vám nemohu ani trochu poradit, jak stavět onu pyramidu.
Pokud jste si o věci někde četl nebo jste někde něco slyšel, hledejte odpovědi u autorů. Při té příležitosti se starejte o odpovědi na otázku, jak se dají projevy oné univerzální energie prokazatelně pozorovat a uvést do souvislosti s ostatním věděním lidstva, které je ověřené a funguje v mnoha podobách v každodenním životě.
(J.Dolejší)   >>>  

327) Makroskopický a mikroskopický proud20. 08. 2002

Dotaz: Rád bych se zeptal, který proud je makroskopický a který mikroskopický a proč? (Petr Besta)

Odpověď: Nevím, v jakém kontextu je užit "mikroskopický proud", ale odpověď podle analogie by zněla asi takto: elektrický proud je vytvořen (mechanickým) pohybem elektrického náboje. Proto vztah "makroskopický proud" vs. "mikroskopický proud" by měl být jako "makroskopický pohyb" vs. "mikroskopický pohyb". U makroskopického předpokládáme "uspořádanost", takže takový pohyb vidíme i navenek. Mikroskopickým pohybem nazýváme zpravidla víceméně chaotický pohyb velmi malých částic, typicky molekul. Takový pohyb ovšem jako celek neuvidíme (střední hodnota vektoru rychlosti je nulová), ale projeví se nám jako (zvýšená) teplota předmětu (střední hodnota velikosti vektoru rychlosti, případně kvadrátu rychlosti, je nenulová).
V tomto smyslu by bylo možno nazvat mikroskopickými proudy např. vířivé proudy. V oblasti elektromagnetického pole je analogií např. rovnovážné tepelné záření ("záření černého tělesa"). Makroskopicky je homogenní a isotropní (tj. stejné ve všech bodech i ve všech směrech) a nemůžeme ho tedy popsat makroskopickými vektorovými veličinami E, D, H, B; jejich střední hodnota je nulová. Ovšem jejich čtverce, a rovněž hustota energie 1/2(E.D + H.B) jsou nenulové.
(J.Obdržálek)   >>>  

328) Hmotnost elektronu12. 08. 2002

Dotaz: Chtěl bych vás poprosit o odkazy na podrobné informace ohledně otázky: Má elektron hmotnost? (Jiří Holas)

Odpověď: Elektron objevil v roce 1897 britský fyzik J.J. Thomson při zkoumání katodového záření. Klidová hmotnost elektronu je me = 9,109534 . 10-31kg. Hmotnost elektronu se vzrůstající rychlostí roste. Můžete ji vypočítat podle vztahu :
m = m0/ (1-(v/c)2)1/2 , kde m0 je klidová hmotnost elektronu, v je jeho rychlost a c je rychlost světla. Podle tohoto vzorce můžete samozřejmě spočítat hmotnost jakéhokoli tělesa pohybujícího se rychlostí v, jetliže znáte jeho klidovou hmotnost (při v = 0 m/s).
Zajímavé informace o elementárních částicích se můžete dočíst na adresách: http://www-hep2.fzu.cz/~rames/outreach/mikro2.pdf, http://www-hep2.fzu.cz/~rames/outreach/castice.html, http://www.aldebaran.cz/astrofyzika/interakce/particles.html, http://www.volny.cz/martin.korous/hmota/hmota.html, http://bfu.lf2.cuni.cz/cz/inka.html, konkrétně o elektronu např. na adrese: http://candra.hyperlink.cz/diplomka/rejstrik/hmotnost_elektronu.htm. Stačí do vyhledávače napsat heslo "hmotnost elektronu" nebo jen "elektron" a pak si jen vybrat.
(M.Urbanová)   >>>  

329) Příliv a odliv30. 07. 2002

Dotaz: Kdy je na moři odliv a kdy příliv? O kolik metrů může stoupnout hladina vody u pobřeží? (Libor)

Odpověď: Milý Libore, na internetu najdete spoustu zajímavých článků o přílivu a odlivu, stačí do vyhledávače zadat dané heslo a pak si už jen vybírat. Z česky psaných je to např.
http://moon.astronomy.cz/librace.htm, http://pes.eunet.cz/veda/clanky/2617_0_0_0.html,
http://utf.mff.cuni.cz/vyuka/OFY016/F2000/capkova.html.
Pokud potřebujete nějaké informace v angličtině použijte heslo "tide". Vysvětlení příčiny přílivu a odlivu je patrné i z následujícíiho obrázku. (vlevo - síly ovlivňující slapové jevy přílivu, vpravo - půsovení slapových jevů - příliv pri Z (zenitu) a N (nadiru), odliv při D). Přílivová síla se stanoví z rozdílu přitažlivé a odstředivé síly.

Místa s největšími přílivy: Záliv Fundy (Kanada) 19,6 metrů, ústí řeky Gallegos (Argentína) 18 metrů, Frobisher Bay (Baffinův ostrov) 17,4 metrů, ústí řeky Severn (Anglie) 16,3 metrů, Granville (Francie) 14,7 metrů. Pokud Vám tyto informace nebudou stačit, dejte mi vědet.

(M.Urbanová)   >>>  

330) Vysoké napětí26. 07. 2002

Dotaz: Jak daleko má být vysoké napětí daleko od panelového domu? Škodí vysoké napětí organismu člověka? (Petra Bláhová)

Odpověď: 1. To je problém konstruktivně-technický, nikoli fyzikální. Záleží především na tom, o jak vysoké napětí jde. Vzdálenosti jsou upraveny technickými normami hlavně proto, aby např. při vichřici a nehodě nemohlo snadno dojít k sekundárním ±kodám.
2. Přímý dotek může člověku ublížit různým způsobem: proud srdcem může narušit pravidelné tepy (anebo naopak obnovit při arytmii formou šoku!), proud protékající tkání ji poškozuje hlavně elektrolýzou. Samotné elektrické pole (nehrozí-li v bezpúrostřední blízkosti přeskok jiskry) by nemělo být nijak škodlivé - alespoň nevím, že by byl škodlivý vliv prokázán, i když jistě je to ve středu zájmu různých organizací (Zelení apod.) (JO - 26.7.2002)

Informace o normách vztahujících se k vašemu dotazu můžete najít i na internetu, zkuste stránky: http://www.streliceubrna.cz/strelice/top/aktuality/002.htm, ochranná pásma - §46: http://www.cr-sei.cz/458_cz.htm, nebo si stáhněte přímo demoverzi, která provádí výpočet daných vzdáleností http://users.pbm.czn.cz/project/software.htm. (MU - 26.7.2002)

Ohlas čtenářů: (od Ondřeje Hájka ondrej@hajek.net): V extrémních případech neplatí "bezpečnost" vysokého napětí. Stříidavé pole vyvolává elektromagnetickou indukci, v jejímž důsledku může vzniknout spád potenciálu - jev nebezpečný při indukci mj. do zemského povrchu. Z dřívějších dob jsou známy i případy úmrtí koňů pod vedením VVN. V extrémně malé vzdálenosti od vedení je smrtelně nebezpečná i samotná indukce do těla (pokud tělo není rovnoběžné s vedením). Takže nejde pouze o nebezpečí přímého dotyku nebo konstrukční bezpečnost.

(J.Obdržálek, M.Urbanová)   >>>