Odpověď:
Milý Lukáši, omlouvám se za zpoždění s odpovědí.
Z Vašeho dotazu totiž přesně nevyplývá, co Vás
přímo o kulovém blesku zajímá. A tak začnu od
začátku.
Kulový blesk je svítící útvar, který má kulovitý,
výjimečně i hruškovitý tvar a roztřepené okraje.
Velikostně se pohybuje od tenisového míčku po míč
na košíkovou. Některé zdroje uvádějí maximální
velikost až několik metrů. Kulové blesky mají
rozmanité barvy - od sinavě bílé až k sytě
červené, někdy jsou i modré. Jev trvá od několika
sekund až po několik minut. Mohou se pohybovat ve
svislém i vodorovném směru, případně setrvat zcela
nehybně na místě. Pohybují se většinou klidně a
vykazují stabilitu.Velká část z nich se otáčí
kolem vlastní osy. Objevují se náhle, a to jak venku,
tak i uvnitř místností
Dosud nebyla přijata
žádná oficiální teorie o vzniku kulového blesku, ale byly
vysloveny některé hypotézy jako např. že jde o elektrický
výboj, přírodní termonukleární reakci, formu
atmosferického plazmatu atd.
Spoustu dalších zajímavých informací i s obrázky blesků
můžete najít na webu na adrese http://www.darius.cz/ag_nikola/blesk_foto.html, http://mujweb.atlas.cz/www/astrofoto/meteorologii.htm (obrázek je z této stránky)
Dotaz: Co to je kapilární elevace, Franck-Herzův pokus, Millicanův pokus a akcelerace.
(Vladka Haragova)
Odpověď: 1.
Kapilární elevace - Kapilarita je jev, který vzniká
v kapilárách (tenkých trubičkách) jako důsledek zakřivení
povrchu kapalin a vzniku kapilárního tlaku. U kapalin, které
smáčejí stěny kapiláry vzniká s dutým povrchem výslednice
směrem ven z kapaliny. To má za následek, že v kapiláře
vystoupí kapalina do takové výšky h, až
hydrostatický tlak sloupce h vyrovná kapilární tlak
- jde o kapilární elevaci. Pro vypuklý povrch a
nesmáčející kapalinu směřuje výslednice dovnitř kapaliny,
takže sloupec se sníží o h - kapilární deprese.
Podívejte se na obrázek.
2.Millikan
v roce 1909 přímou metodou změřil velikost elementárního
náboje (e = 1,602 . 10-19 C). Určil ji porovnáním
sil, kterými působí elektrostatické a gravitační pole na
malá nabitá tělíska. Mezi desky kondenzátoru byly
vstřikovány olejové kapičky a mikroskopem sledován jejich
vertikální pohyb v přítomnosti elektrického pole a bez
něho. Uspořádání pokusu můžete vidět na obrázku. 3.Franck-Hertzův pokus (1914)
- myšlenka jejich pokusu spočívá v tom, že atomy
zředěného plynu se ostřelují elektrony s rychlostmi 105
m.s-1. Při tom dochází k pružným nebo nepružným
srážkám s atomy plynu. Z jejich pokusu vyplynulo, že při
rychlostech elektronů menších než kritická rychlost
dochází k pružným srážkám s atomy plynu. Elektron
neodevzdá atomu svoji energii, ale odrazí se od něho (změní
se jen směr jeho rychlosti). Pokud elektrony dosáhnou jisté
kritické rychlosti (různé pro různé látky), nastane
srážka nepružná. Elektron odevzdá svoji energii atomu,
který přitom přejde do jiného stacionárního stavu s
vyšší energií. Atom tedy buď vůbec nepřijímá energii
(pružná srážka), nebo ji přijímá jen v kvantech rovných
rozdílu energií dvou stacionárních stavů.Ve svém pokusu
ukázali, že pokud energie elektronů nedosáhne jistou
kritickou hodnotu, nastávají jen pružné srážky elektronů s
atomy plynu. Uspořádání jejich pokus můžete vidět na obrázku. 4. Akcelerace = zrychlení.
Mění-li se vektor rychlosti, říkáme, že se těleso pohybuje
se zrychlením. Zrychlení jako fyzikální veličinu značíme a,
jeho jednotkou je m.s-2.
Dotaz: 1.Slyšel jsem, že na Jupiteru existuje vodík v "kovovém stavu" . Jaké má vlastnosti a co to vlastně je?
2. Šel by udělat "podomácku" laser-jak?
3. Viděl jsem v noci, jak blesk uhodil do vysokonapěťového transformátoru a po chvilce se kolem transfornátoru objevila modrá světélkující mlha, která se asi 10min pohybovala od transformátoru a pak pomalu zanikla. Co to bylo a na jakém to je principu?
(Merek)
Odpověď: 1.
Nevím, zda zrovna na Jupiteru je a proč se soudí, že
by tam pro něj byly vhodné podmínky. "Vodík v kovovém
stavu" je docela lákavá představa založená na tom, že
vodík je ve stejném sloupci jako alkalické kovy.
"Obvyklý" ztužený vodík (ochlazením, resp. za
mírně zvýšených tlaků) je ale izolátor složený z molekul
H2 držících spolu van der Waalsovými silami,
nikoli vodič. Lze si ale představit, že za hodně vysokého
tlaku by mohla existovat kovová vazba. 2. Koupit si vhodné zařízení, např.
laserové ukazovátko (na trhu od 100 Kč) anebo v obchodu se
součástkami polovodičovou laserovou diodu. Jde o to, k čemu
ten laser potřebujete. 3. Zřejmě tam došlo k ionizaci vzduchu,
eventuálně k tvorbě metastabilních radikálů. To, že šlo
právě o vysokonapěťový transformátor, se mi ani nezdá
podstatné tak, jako to, že do (kovové konstrukce) uhodilo.
Dotaz: Dá se nějak fyzikálně vysvětlit, co je to vůně či zápach? Proč třeba vnímáme, že květina voní, syrečky smrdí (voní), tužku necítíme? Patří-li tedy tato otázka vůbec do fyziky. A jak je to s chutí? U zbývajících třech smyslů (zrak, sluch, hmat) si umím fyzikální podstatu představit, ale u těchto dvou moc ne. (Radek Fojtik)
Odpověď: Čich, kterým zjišťujeme různé vůně či zápachy, souvisí
úzce s chutí. (Všimněte si, že ztratíte-li při pořádné
rýmě čich, jeví se podle chuti kafe kyselé a polívka
bramboračka sladká.) Jak správně naznačujete, jde tu o
otázku nikoli fyzikální, ale chemickou; specializované buňky
jsou citlivé na přítomnost některých molekul, a to i v
naprosto nepatrných množstvích, snad na úrovni malého počtu
molekul (např. feromony). U člověka je chuť snad
nejcitlivější na kapsicin (obsažený např. v paprice). Na
druhou stranu, chemická reakce znamená přeměnu chemických
vazeb, přičemž pojem chemické vazby vysvětluje kvantová
chemie (kterou lze taky pokládat za kvantovou fyziku
elektronového obalu atomů, moloekul a iontů). Nemohu vyloučit
ani čistě fyzikální jevy jako obsorpce a adsorpce (na
povrchu), ale spíš půjde o ty chemické reakce. Samozřejmě
jsou buď vhodným způsobem vratné, anebo se matička příroda
spolehne na to, že se použitá část našeho čidla opět
obnoví, jako (skoro) cokoliv v našem těle.
Dotaz: Včera byl na kanálu Spectrum odvysílán dokument o tzv. Studené fúzi. Pojednával o pokusu fyziků Pondse a Fleischmanna (snad jsem pochytil ta jména O.K.) z roku 1989, kdy se při reakci uvolnilo zajímavé množství "zbytkového" tepla.
Při ověřování však nebylo dosaženo pokaždé stejného výsledku a na popud prezidenta Busche (staršího) byla ustavena vyšetřovací komise, která pokus vyvrátila.
V průběhu 90. Let pak docházelo ke střetnutí mezi přívrženci a odpůrci této metody, přičemž vždy měli navrch odpůrci. Dokument však naznačuje, že odpůrci nikdy nejednali zcela nezaujatě.
Můžete to prosím nějak nezávisle komentovat?
(Jan Rechnovský)
Odpověď: Nevylučuji v principu, že by šla najít nějaká ta
"studená fúze", tj. že by šlo nějakým trikem
nechat k sobě přiblížit např. dvě jádra vodíku, tedy
protony, aby z nich vzniklo jádro deuteria (p+n+e+neutrino).
Toto splynutí se nazývá fúze. Je ale nutno dodat oběma
jádrům velikou energii (420 keV, tedy urychlit je napětím 420
000 V a strefit se čelně), protože se na dálku odpuzují
(tak, jak bychom taky čekali od elektricky stejně nabitých
částic). Pravda je, že po překonání této energiové
bariéry se nám všechna dodaná práce nejenom vrátí, ale
ještě kus přibyde - ale kde si půjčit na ten začátek?
Klasická "horká fúze" spočívá prostě v tom, že
vodík dostatečně zahřejeme. Spočítáte-li si ale teplotu,
která odpovídá oné energiové bariéře, dostanete nesmírně
vysokou teplotu, překračující podstatně teplotu ve Slunci
(asi 15 milionů stupňů, což je jen 1,3 keV). Jeden trik je
ale v tom, že má-li látka nějakou teplotu, pak
odpovídající střední kinetická energie je opravdu jen
STŘEDNÍ, tedy některé částečky (molekuly, atomy, ionty,
podle toho, o co jde) budou v daném okamžiku mít energii
menší, jiné větší. Nepatrná část může mít i energii
podstatně větší, takže jí to stačí na fúzi - a to je
případ Slunce, které taky spíše "doutná" než
"hoří".
Další trik je v tom, najít nějaký šikovný mezistupeň,
přes který by se dala bariéra přelézt třeba tím, že by se
menší dávky energie složily dohromady - asi jako přelezete
zeď, bude-li u ní žebřík. Nalezení takového žebříku by
bylo právě onou studenou fúzí. Objektivně vzato se to zatím
nepodařilo, i když takový jev není vyloučen. (Není také
tak docela snadné poznat, zda na pár atomech k tomu došlo a
zda by to v takovém případě mělo vůbec význam.) Ovšem to,
že někdo bude zarputile hájit tézi, které věří, i když
nebyla pokusem ověřena - to už je otázka spíše
psychologická, ne-li psychiatrická.