FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 365 dotazů obsahujících »jev«

55) Zachování energie a rozpínání vesmíru27. 02. 2008

Dotaz: Dobrý den, zde: http://fyzweb.cuni.cz/new/clanky/index.php?id=106 píšete: "Podle základního modelu velkého třesku náš vesmír vznikl ze singularity, bodové oblasti prostoru „nabušené energií“. Proto tato oblast tvořila velmi horké a velmi husté prostředí, v němž byla gravitace natolik silná, že vesmír byl zakřiven sám v sobě s poloměrem křivosti jen 10-34 m."
Mohli byste mi prosím sdělit, kde se tato energie vzala? Podle zákona o zachování energie by součet všech energií měl být nulový, nelze mít energii z ničeho. Tedy někde je stejné množství chybějící energie. Tušíte aspoň kde se nachází a jaké má vlastnosti (dle selského rozumu by měla mít vlastnosti přesně opačné než "ta naše")?   (Jaroslav)

Odpověď: Zákon zachování energie je mocné pravidlo, s nímž se potkáváme v běžném životě prakticky všude a již mnohokrát vedl k novým objevům. Mohlo by se tedy zdát, že jde o univerzální a všude platný zákon - ale není tomu tak. Existují děje, při nichž se energie nezachovává a rozpínání vesmíru je jedním z takových dějů. Trochu více se o tom dočtete například v článku Jiřího Jersáka v časopise Vesmír (2008/1).

Tvrzení, že zákon zachování energie neplatí úplně vždy, by mohl vést k domněnce, že by přeci jen bylo možné sestavit perpetuum mobile. Bohužel, nebylo - případy, kdy zákon zachování energie neplatí se k dolování a následnému zužitkování energie použít nedají.

(Jakub Jermář)   >>>  

56) Využití černých děr21. 02. 2008

Dotaz: Zaujímam sa o čierne diery a všetko, čo s nimi súvisí, ale minule so narazil na otázku, aké využitie majú resp. aké budú možno mať v budúcnosti. Čítal so niečo o možnosti pomocou takej velkej gravitačnej sily udržať stabilnú napr. červiu dieru. Ako by ste videli potenciálne využitie čiernych dier v budúcnosti vy? Dakujem za odpoved. (Ján Borovský)

Odpověď: Udržení tzv. červí díry a s tím související cestování prostoročesem je v současné době spíše na úrovni hypotéz a spekulací. Výrazně reálnější se jeví možnost používat rotující černé díry jako zdroj energie, což teoreticky možné je (prakticky se současnými možnostmi lidstva samozřejmě nikoli). Zajímáte-li se o tuto problematiku, doporučuju Vaší pozornosti knihu Černé díry a zborcený čas od Kipa S. Thorneho (v češtině vyšla roku 2004 v edici Kolumbus).

(Jakub Jermář)   >>>  

57) Filadelfský experiment21. 02. 2008

Dotaz: Dobrý den, chtěla bych znát Váš názor na tzv. Filadelfský projekt. (http://tajomstva.org/cas-a-priestor/filadelfsky-experiment/ http://www.crystalinks.com/phila.html) (Katka)

Odpověď: Jsem pevně přesvědčen, že jde o vymyšlený případ, řekněme takové sci-fi. Dovolím si citovat prof. MUDr. Jiřího Heřta:

historie začíná tím, že amatérský astronom, Morris Jessup, vydal v r. 1955 knihu o UFO. S námořním experimentem vůbec nesouvisela. Rok poté dostal Jessup dopis od Carla Allende, který se představil jako svědek zmizení lodi Eldridge, když se plavil jako lodník na obchodní lodi pojmenované A. Faruseth. Ten ho ihned požádal dopisem o další detaily. Allende však odpověděl až po několika měsících, podepsal se jako Carl Allen a slíbil, že detaily sice nezná, ale že je získá v hypnóze. Jessup kontakt se zřejmým psychopatem přerušil. V r. 1957 poslal „Allen“ Úřadu pro námořní výzkum exemplář Jessupovy knihy se spoustou okrajových, značně zmatených poznámek ve třech různých barvách a se spoustou gramatických chyb, ve kterých se opět zmiňoval o případu lodi Eldridge. Pak Allen natrvalo zmizel. Jessup chtěl téma beletristicky zpracovat, jenže nenašel vydavatele a po několika letech spáchal sebevraždu. O kuriózním tématu se dozvěděl autor science fiction literatury Vincent Gaddis a inspirovalo ho v r. 1965 k vydání první knihy o záhadě lodi Eldridge. Následovali další autoři, z nichž největší úspěch měl v r. 1977 J. Berlitz s knihou nazvanou už „Philadephila Experiment – Project Invisibility“. Teprve poté se z případu stala veřejná sensace a impuls k celonárodní diskusi. Objevovaly se další publikace, přidávaly se další podrobnosti a podle této smyšlené události byl natočen v r. 1984 i film. Objevovali se i noví svědci, ale byli vždy odhaleni jako podvodníci. Případ je jasný, jde o krásnou báchorku.


Celý článek pak naleznete na
(Jakub Jermář)   >>>  

58) Gravitační čočka11. 02. 2008

Dotaz: Můžete mi prosím vás podrobněji vysvětlit co je gravitační čočka a jaký má vliv na okolní tělesa? Dále mě také zajímá efekt gravitační čočky. Děkuji Kynčlová (Marika Kynčlová)

Odpověď: O jevu tzv. gravitační čočky se hovoří tehdy, pozorujeme-li nějaký zdroj záření (typicky vzdálená galaxie) a mezi námi a zdrojem se nachází velmi hmotné těleso (typycky opět galaxie). Při průletu světla vzdálenějšího zdroje okolo gravitujícího tělesa dochází k ohybu jeho paprsků podobně jako při průchodu světla například skleněnou čočkou - odtud i název.



Jev předpověděl Albert Einstein v roce 1936. Jsou-li oba objekty a pozorovatel dokonale na přímce, vznikne jako obraz vzdáleného zdroje tzv. Einsteinův prstenec, pokud jsou objekty mírně vyosené, vznikne buď oblouk nebo několikanásobný obraz vzdáleného zdoje. Podívejte se na čáry a oblouky například na fotografii kupy galaxií (Abel 2218) pořízené v roce 1995 pomocí Hubbleova vesmírného dalekohledu:



Foto obrázky byly převzaty ze serveru Aldebaran, který lze doporučit i jako zdroj dalších a podrobnějších informací, viz
(Jakub Jermář)   >>>  

59) Světélkující předměty08. 02. 2008

Dotaz: Dobrý den, zajímalo by mne co způsobuje některých věcí ve tmě. Například ty různé svíticí stavebnice , hračky, gumy. Děkuji (Martin Slepička)

Odpověď: V případě, že je předmět nejprve nutno osvítit, aby pak ve tmě světélkoval, jedná se o fosforescenci. Takto fungují například "hvězdičky", které se lepí na strop dětského pokoje, nebo svítící gumové náramky. Fosforescence je jev, kdy vhodná chemická látka (používá se hlinitan strontnatý aktivovaný europiem, dříve též sulfid zinečnatý aktivovaný mědí) absorbuje světlo, tím se její molekuly dostanou do stavu o vyšší energii (excitovaný stav), ve kterém se ovšem udrží jen určitou dobu - u fosforescence může podle druhu látky jít o setiny sekundy až dny. Potom se molekuly vrátí zpět do původního stavu a přebývající energii vyzáří ve formě světla, které pozorujeme jako světélkování - protože je jen slabé, je lepší je pozorovat ve tmě.

Podobným případem je fluorescence, kdy ovšem dochází k návratu molekul a vyzáření světla téměř okamžitě po osvícení, tj. světélkování zmizí, jakmile na látku nesvítíme. Takto fungují optické zjasňovače v pracích prášcích a ve zvýrazňovacích fixech, které svítí viditelným světlem, pokud je ozařujeme "neviditelným" UV světlem (je obsaženo i ve slunečním světle). Pozorujeme to výrazně na diskotékách (bílá trička tam září) nebo při zkoušení pravosti bankovek.

Energii pro světélkování lze látce dodat i jinak než osvícením - například vhodnou chemickou reakcí, teplotou, radioaktivním rozpadem jiné látky či mechanickým tlakem a pod. Pro účely, které popisujete v otázce, je ovšem nejpraktičnějším způsobem právě osvícení.

(Hanka Böhmová)   >>>