Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 365 dotazů obsahujících »jev«
65) Rychleji než světlo
19. 01. 2008
Dotaz: Dobrý den, před nedávnem udělal naší třídě náš velevážený vyučující
termodynamiky do hodiny vsuvku o částici, která má být rychlejší než světlo. Z
tohoto webu jsem usoudil, že se asi jedná o urychlený foton. Popisoval celou
situaci na myšlenkovém pokusu ve kterém částice o rychlosti světla neměla žádný
časový přírůstek (čas se pro ní z našeho pohledu zastavil). Tuto částici
urychlil na rychlost vyšší než rychlost světla a ona pak "cestovala" do
minulosti. To znamenalo, že částice dorazila do cíle ještě dříve, než vůbec byla
vypuštěna na cestu. Chtěl jsem se tedy zeptat, jestli již byl tento jev nějak
testován a opravdu se lidstvu již podařilo překonat rychlost světla a odeslat
tak foton do minulosti nebo se jedná jen o neuskutečnitelnou teorii a můžeme si
ji sestrojit jen jako myšlenkový pokus. Děkuji za odpověď (Miroslav Kabát)
Odpověď: Světlo (fotony) se nemůže pohybovat jinak, než rychlostí světla, přičemž rychlost světla je dokonale konstantní (tedy myšleno ve vakuu - v látkových prostředích je rychlost světla obecně jiná). Z toho rovnou plyne, že takováto neobvykle rychlá částice by nemohla být foton. Existují spekulace, že by mohla existovat částice - většinou ji říkáme tachyon (z řeckého ταχύς [tachýs] = rychlý) - která by se rychleji než světlo ve vakuu pohybovala. Některé teorie ji připouštějí, některé ne. Z teorie relativity navíc plyne, že není možné pomalou částici urychlit na rychlost světla nebo vyšší, takže tachyon nemůžeme získat urychlením něčeho (pod)světelného, musel by se tedy pohybovat nadsvětelnou rychlostí pořád, po celou dobu své existence).
Existence takové nadsvětelné částice by skutečně znamenala, že bychom se museli důkladně revidovat své představy o plynutí času, s tím spojené rychlosti, kinetické energii a dalších.
Obecně se ale předpokládá, že žádná nadsvětelná částice neexistuje. Dosud nebyla nikdy pozorována a ani nevím o existenci nějakých pozorovaných jevů, které se pomocí tachyonů daly vysvětlit.
Dotaz: Dobrý deň, chcel by som sa opýtať či fyzici vedia vysvetliť rotáciu planét
(alebo ich mesiacov) okolo svojej osi a ak áno, ako sa dá doba rotácie okolo osi
vypočítať. Dakujem. (Luboš)
Odpověď: I mírná nesymetrie (nenulový moment hybnosti zárodečné látky vůči centru budoucí planety) při formování planety vede k její rotaci (nerotující planeta je tedy sice teoreticky možný, ale naprosto nepravděpodobný jev). Doba rotace (nebo spíše moment hybnosti, který s periodou rotace souvisí) je do značné míry nezávislá vlastnost planety a z běžně dostupných údajů (hmotnost, rozměry, teplota povrchu, vzdálenost od Slunce či jiné hvězdy, tvar dráhy, ...) ji nelze spočítat. Občas, zejména u měsíců, se ale vyskytuje tzv. vázaná rotace, kdy je doba oběhu měsíce okolo planety rovna době otočení se měsíce okolo osy (z pohledu planety) - příkladem takové vázané rotace může být třeba náš Měsíc.
O rotačních dobách (čas otočení se okolo osy) planet si lze udělat představu z této tabulky:
Dotaz: Chtěl bych se zeptat, jakým způsobem pulsary emitují tak úzký paprsek záření?
Září tímto způsobem i ostatní neutronové hvězdy? (Martin)
Odpověď: Pulzar je neutronová hvězda, tedy hvězda vzniklá zhroucením dostatečně hmotné "obyčejné" hvězdy. "Obyčejná" hvězda, správněji tzv. hvězda hlavní posloupnosti je například naše Slunce. V takové hvězdě probíhají termojaderné reakce, které jednak dodávají hvězdě energii, aby mohla zářit, krom toho ale také pomáhají udržet hvězdu stabilní (tlak vznikajícího záření působí proti gravitačním silám). Když hvězda ve svém jádru vypotřebuje jaderné palivo (zejména vodík, později u větších hvězd i helium a další lehké prvky) a nedokáže již vzdorovat vlastní gravitaci, začne se gravitačně hroutit. Menší a střdní hvězdy (s hmotností do přibližně 1,4 násobku hmotnosti Slunce - to je tzv. Chandrasekharova mez) se zhroutí do tzv. bílého trpaslíka - hvězdy o poloměru asi 10 000 km. Zde jejich hroucení zastaví tlak elektronového plynu (kvantově mechanický jev). Bílý trpaslík pak už jen velmi pomalu chladne a tím postupně přestává tepelně zářit.
Hvězdy mnohonásobně hmotnější než hmotnost Slunce se zhroutí úplně a vznikne tzv. černá díra.
A někde mezi tím, jsou hvězdy, které jsou jen o něco málo hmotnější než ona Chandrasekharova mez (1,4 hmotnosti Slunce). Ty už jsou příliš hmotné na to, aby je udržel tlak elektronového plynu a hroutí se až na poloměr několika desítek kilometrů, kde je hroucení zastaveno tzv. tlakem neutronového plynu. Vzniká tak tzv. neutronová hvězda.
Pulzar je otáčející se neutronová hvězda se silným magnetickým polem. Nějaké magnetické pole má prakticky každá hvězda. Když se pak hvězda zhroutí - smrskne z poloměru několika miliónů kilometrů na několik desítek kilometrů, magnetické pole se značně zahustí. Stejně tak prakticky každá hvězda rotuje (naše Slunce se otočí přibližně jednou za 25 dní) a při hroucení se i rotace značně (nepřímo úměrně poloměru) urychlí. Neutronová hvězda pak zárí zejména ve směru svého magnetického pole, přičemž toto pole rotuje společně s hvězdou, takže neutronová hvězda vysílá do vesmíru podobně, jako otáčejicí se maják - jejich světlo/záření vidíme v podstatě jen tehdy, když je jejich svazek paprsků nasměrován k nám.
Modře je znázorněn emitovaný svazek záření, bíle magnetické siločáry a zeleně osa rotace pulzaru. Zdroj: wikipedia.org
Tímto způsobem září všechny neutronové hvězdy, které ve vesmíru pozorujeme. Neutronové hvězdy, které by takto nezářily, totiž zatím nijak jinak detekovat neumíme (zejména proto, že neutronová hvězda je rozměrově velmi velmi malá a svítí tedy jen velmi slaboučce). Teoreticky je možné, aby existovala nerotující neutronová hvězda (tj. je to z pohledu fyzikálních zákonů to není apriori zcela vyloučené).
Dotaz: Dobrý den, zajímalo by mě, zda-li se již experimentálně podařilo na urychlovači
LHC "vyrazit" higgsovy bosony z vakua či nikoliv. Nepodařilo se mi prozatimní
výsledky tohoto pokusu nalézt. Třeba jsou Vaše zdroje aktuálnější. Děkuji
mnohokrát za odpověď. S pozdravem Josef (Josef Pavlík)
Odpověď: Urychlovač LHC ještě nezačal fungovat, tak je trochu brzo očekávat objevy. Ale je pravda, že jednotlivé experimenty uz začínají fungovat a detekovat kosmické záření. To poslouží především ke kalibraci a kontrole funkce experimentu, převratné objevy se však v těchto podmínkách očekávat nedají. Tak snad až příští rok, sledujte
Dotaz: Dobrý den, měl bych takový malý dotaz. Pokud se mluví o barvě světla, většinou
se uvádí určitá vlnová délka jako její určující faktor. Jenže jelikož prostředí
ovlivňuje rychlost světla a zároveň i jeho vlnovou délku, znamená to, že bych
měl v opticky hustším prostředí, např. ve vodě, vidět barvy zkresleně. Proč tomu
tak není? (Petr)
Odpověď: Především si ujasněme, že prostředí sice mění vlnovou délku světla, nemění však jeho frekvenci. A pravě frekvence (a s ní spojené množství energie připadající na jeden foton) je to, co vnímá neše oko i naprostá většina přístrojů detekujících světlo. Pokud mluvíme o vlnové délce, obvykle tím myslíme vlnovou délku daného světla ve vakuu (a tedy i ve vzduchu, neboť ve vzduchu se od vakua liší jen nepatrně).
Dále je třeba se zmínit o disperzi světla. Prostředí totiž ovlivní rychlost světla různých barev různě. To se projeví především při použítí některých optických prvků, například čoček. Různá rychlost světla různých barev uvnitř čočky totiž znamená i různý index lomu pro různé barvy. A jelikož na indexu lomu záleži, jak moc ke kolmici (resp. od kolmice) se bude světlo lámat, bude výsledným efektem to, že čočka bude lámat červené světlo jinak než modré. Opravdu tedy uvidíte obraz zkreslený. Tuto nepříjemnost nazýváme "chromatická vada" či "chromatická aberace" (z řeckého χρώμα [chróma] = barva a latinského aberrare = odchylovat se). Optická soustava (tedy obvykle několik vhodně volených a zkombinovaných čoček) odstraňující chromatickou vadu se pak nazývá "achromát".