Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 365 dotazů obsahujících »jev«
67) Pulzary
26. 12. 2007
Dotaz: Chtěl bych se zeptat, jakým způsobem pulsary emitují tak úzký paprsek záření?
Září tímto způsobem i ostatní neutronové hvězdy? (Martin)
Odpověď: Pulzar je neutronová hvězda, tedy hvězda vzniklá zhroucením dostatečně hmotné "obyčejné" hvězdy. "Obyčejná" hvězda, správněji tzv. hvězda hlavní posloupnosti je například naše Slunce. V takové hvězdě probíhají termojaderné reakce, které jednak dodávají hvězdě energii, aby mohla zářit, krom toho ale také pomáhají udržet hvězdu stabilní (tlak vznikajícího záření působí proti gravitačním silám). Když hvězda ve svém jádru vypotřebuje jaderné palivo (zejména vodík, později u větších hvězd i helium a další lehké prvky) a nedokáže již vzdorovat vlastní gravitaci, začne se gravitačně hroutit. Menší a střdní hvězdy (s hmotností do přibližně 1,4 násobku hmotnosti Slunce - to je tzv. Chandrasekharova mez) se zhroutí do tzv. bílého trpaslíka - hvězdy o poloměru asi 10 000 km. Zde jejich hroucení zastaví tlak elektronového plynu (kvantově mechanický jev). Bílý trpaslík pak už jen velmi pomalu chladne a tím postupně přestává tepelně zářit.
Hvězdy mnohonásobně hmotnější než hmotnost Slunce se zhroutí úplně a vznikne tzv. černá díra.
A někde mezi tím, jsou hvězdy, které jsou jen o něco málo hmotnější než ona Chandrasekharova mez (1,4 hmotnosti Slunce). Ty už jsou příliš hmotné na to, aby je udržel tlak elektronového plynu a hroutí se až na poloměr několika desítek kilometrů, kde je hroucení zastaveno tzv. tlakem neutronového plynu. Vzniká tak tzv. neutronová hvězda.
Pulzar je otáčející se neutronová hvězda se silným magnetickým polem. Nějaké magnetické pole má prakticky každá hvězda. Když se pak hvězda zhroutí - smrskne z poloměru několika miliónů kilometrů na několik desítek kilometrů, magnetické pole se značně zahustí. Stejně tak prakticky každá hvězda rotuje (naše Slunce se otočí přibližně jednou za 25 dní) a při hroucení se i rotace značně (nepřímo úměrně poloměru) urychlí. Neutronová hvězda pak zárí zejména ve směru svého magnetického pole, přičemž toto pole rotuje společně s hvězdou, takže neutronová hvězda vysílá do vesmíru podobně, jako otáčejicí se maják - jejich světlo/záření vidíme v podstatě jen tehdy, když je jejich svazek paprsků nasměrován k nám.
Modře je znázorněn emitovaný svazek záření, bíle magnetické siločáry a zeleně osa rotace pulzaru. Zdroj: wikipedia.org
Tímto způsobem září všechny neutronové hvězdy, které ve vesmíru pozorujeme. Neutronové hvězdy, které by takto nezářily, totiž zatím nijak jinak detekovat neumíme (zejména proto, že neutronová hvězda je rozměrově velmi velmi malá a svítí tedy jen velmi slaboučce). Teoreticky je možné, aby existovala nerotující neutronová hvězda (tj. je to z pohledu fyzikálních zákonů to není apriori zcela vyloučené).
Dotaz: Dobrý den, zajímalo by mě, zda-li se již experimentálně podařilo na urychlovači
LHC "vyrazit" higgsovy bosony z vakua či nikoliv. Nepodařilo se mi prozatimní
výsledky tohoto pokusu nalézt. Třeba jsou Vaše zdroje aktuálnější. Děkuji
mnohokrát za odpověď. S pozdravem Josef (Josef Pavlík)
Odpověď: Urychlovač LHC ještě nezačal fungovat, tak je trochu brzo očekávat objevy. Ale je pravda, že jednotlivé experimenty uz začínají fungovat a detekovat kosmické záření. To poslouží především ke kalibraci a kontrole funkce experimentu, převratné objevy se však v těchto podmínkách očekávat nedají. Tak snad až příští rok, sledujte
Dotaz: Dobrý den, měl bych takový malý dotaz. Pokud se mluví o barvě světla, většinou
se uvádí určitá vlnová délka jako její určující faktor. Jenže jelikož prostředí
ovlivňuje rychlost světla a zároveň i jeho vlnovou délku, znamená to, že bych
měl v opticky hustším prostředí, např. ve vodě, vidět barvy zkresleně. Proč tomu
tak není? (Petr)
Odpověď: Především si ujasněme, že prostředí sice mění vlnovou délku světla, nemění však jeho frekvenci. A pravě frekvence (a s ní spojené množství energie připadající na jeden foton) je to, co vnímá neše oko i naprostá většina přístrojů detekujících světlo. Pokud mluvíme o vlnové délce, obvykle tím myslíme vlnovou délku daného světla ve vakuu (a tedy i ve vzduchu, neboť ve vzduchu se od vakua liší jen nepatrně).
Dále je třeba se zmínit o disperzi světla. Prostředí totiž ovlivní rychlost světla různých barev různě. To se projeví především při použítí některých optických prvků, například čoček. Různá rychlost světla různých barev uvnitř čočky totiž znamená i různý index lomu pro různé barvy. A jelikož na indexu lomu záleži, jak moc ke kolmici (resp. od kolmice) se bude světlo lámat, bude výsledným efektem to, že čočka bude lámat červené světlo jinak než modré. Opravdu tedy uvidíte obraz zkreslený. Tuto nepříjemnost nazýváme "chromatická vada" či "chromatická aberace" (z řeckého χρώμα [chróma] = barva a latinského aberrare = odchylovat se). Optická soustava (tedy obvykle několik vhodně volených a zkombinovaných čoček) odstraňující chromatickou vadu se pak nazývá "achromát".
Dotaz: Proč v zimě namrzají častěji mosty než zbylé části silnice? Myslela jsem si, že při proudění vzduchu pod mostem dojde ke snížení tlaku (podle Bernoulliovy rovnice) a pokles tlaku způsobí pokles teploty, ale to by muselo jít o izochoricky děj. To jsem zavrhla, proto se ptám, jaký je pravý důvod? (Jana)
Odpověď: Domnívám se, že za jevem stojí zejména dva faktory. Především vozovka na mostě promrzne dříve, než tatáž vozovka "na pevné zemi" prostě proto, že je ochlazována jak zvrchu, tak i zespodu (přičemž předpokládám, že most není tak tlustý, aby nepromrzl a vozovku zespodu dostatečně izoloval). Druhým faktorem pak bude skutečnost, že díky větru (který je na mostě pravděpodobně častější a intenzivnější než průměr v krajině krajině) zde dochází k rychlejší výměně studeného vzduchu a tím i rychlejšímu odvodu tepla prouděním.
Dotaz: Na přednášce J. Grygara padla řeč o nespojitosti času. Tedy, že čas je stejně
jako např. světlo kvantován a že toto kvantum trvá cca 10 na minus 46 sekundy..
Chtěl bych vědět, jestli tato doba je dobou tohoto kvanta, kdy jakoby "čas je"
nebo je to ona mezera mezi jednotlivými kvanty (tedy kdy "nic není") a pak tedy
jakou dobu mají tato kvanta. Dále by mě zajimalo, jakým způsobem byla
nespojitost času odvozena-dokázána. děkuji (jirr)
Odpověď: Lepší je představovat si čas přibývající po skocích délky 10-44 sekundy (nebo menších - tak by skákala "vteřinová" ručička těch nejpřesnějších hodin; žádná změna by nemohla trvat kratší dobu), což je takzvaný Planckův čas odvozený jako kombinace tří základních konstant popisujících kvantovou teorii a gravitaci (rychlost světla c, gravitační konstanta G, Planckova konstanta h) a mající rozměr v jednotkách času. Tato konstanta určuje oblast, ve které předpokládáme nutnost teorii relativity (popusujici spojitý prostoročas) konzistentně nakvantovat. V takové kvantové teorii relativity by už měl mít prostoročas diskrétní charakter. Tento efekt se skutečně objevuje v některých modelech teorie strun a smyčkové kvantové gravitace (zejména v tzv. Spinfoam modelech). Obě konkurenční teorie by mohly vést k nakvantovani teorie relativity,
ale zatím žádné jimi predpovezene nové efekty nebyly naměřeny, takže nelze jednu z nich upřednostňovat. Stejně tak není žádný solidní experimentální výsledek potvrzující diskrétní charakter času. Byla pouze zjištěna diskrétní povaha rudých posuvů galaxií, která ale nevede nutné k diskrétnosti času.