Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 365 dotazů obsahujících »jev«
78) Mpemba effect (Mpembův jev)
15. 08. 2007
Dotaz: Dobrý den Můj dotaz je ohledně mrznutí vody. Je pravda, že voda o vyšší teplotě
(např.: 8°C) zmrzne rychleji, než voda o teplotě menší (např.: 5°C)? (Petr Rudolf)
Odpověď: Doporučuji, abyste si to sám vyzkoušel. Budeme rádi, když nám pak podáte zprávy o svém experimentování, ať už to dopadne jakkoliv.
Zmíněný jev je v odborné literatuře znám pod názvem Mpemba effect (Mpembův jev) podle spoluautora článku, díky kterému bylo toto téma v minulém století "znovuobjeveno".
Mrznutím vody jsem se zabýval ve své
diplomové práci, z níž zkráceně ocituji závěr:
Teplejší voda skutečně může za stejných výchozích podmínek (až na rozdílné počáteční teploty) zmrznout v celém svém objemu dříve než voda původně studenější. Není to však pravidlem a zdá se to být spíše méně obvyklé. Velká popularita Mpembova jevu (otázka „Která voda zmrzne nejdřív – studená, nebo teplá?” zazněla dokonce v pořadu Nikdo není dokonalý) při jeho ve skutečnosti poměrně nesnadném pozorování (jednak proto, že často vůbec nenastane, jednak proto, že pokud nastane, nemusí být příliš výrazný) spočívá patrně v jeho zdánlivém rozporu s fyzikálními principy. Při bližším pohledu se však tento paradox dá objasnit způsoby přístupnými i středoškolským studentům.
Nejvýrazněji se Mpembův jev projeví v prostředí pokrytém ledem a sněhem (venku na mrazu nebo v poněkud zanedbané mrazničce). Nádoba s horkou vodou se může do takového podkladu protavit, a získat tak výrazně lepší tepelný kontakt s okolím. V praxi pak může rozdíl časů od počátku chlazení až do úplného ztuhnutí pro horkou a pro studenou vodu činit desítky procent.
Původně teplejší voda může zmrznout dříve než voda původně studenější také v případě, kdy se dostatečná část původního objemu díky vyšší teplotě odpaří. Tuhnutí pak probíhá v menším množství vody. Pečlivá hospodyně by si tedy mohla za jistých okolností všimnout, že rychleji získá kostky ledu v případě, kdy vodu před umístěním do mrazicího boxu ohřeje v rychlovarné konvici nebo mikrovlnné troubě. Doporučit jí takový postup ale můžeme jen sotva, protože je skoro určitě výhodnější dát do nádoby vodu studenou a rovnou snížit její množství o to, co by se bývalo vypařilo z horké vody.
Další okolností, která nesporně Mpembův jev podporuje, je přechlazení vody (to je jev, kdy voda zůstává při běžném tlaku v kapalné fázi i při teplotách pod nulou) – to ale pouze v případě, že se původně teplejší voda přechladí méně (tj. na vyšší teplotu) než voda původně studenější (jde o nutnou podmínku). Mpembův jev nastane tím spíše, čím více se teplota přechlazení původně teplejší vody blíží teplotě tuhnutí, případně čím více se teplota přechlazení původně studenější vody blíží teplotě v mrazničce. Přechlazování vody je ovšem do značné míry jev náhodný, takže spoléhat se na něj v jednotlivých pokusech nemůžeme.
Výše uvedené závěry jsem teoreticky i experimentálně ověřil. V citované práci si můžete přečíst o dalších okolnostech, které by mohly mrznutí vody ovlivňovat, najdete tam také odkazy na související články.
Dotaz: Odráží-li např. alu-fólie teplo zpět do místnosti, funguje jakoby tepelná
izolace; bude odrazný (a tedy tepelně-izolační) účinek podobný i když se bude
odrazné fólie přímo dotýkat vrstva jiné hmoty? Má smysl dávat odraznou fólii pod
malbu nebo omítku, pod vrstvu podlahového betonu, jako tepelnou izolaci, nebo
naopak usnadní tepelnou vodivostí průnik tepla? (František Hybner)
Odpověď: Al-fólie odráží teplo šířící se zářením neboli sáláním, má tedy smysl především na povrchu (zdi, stropu, ...). S podložkou je v kontaktu zadní stranou, což odrazu na přední straně nevadí, projeví se to jen tím, že vlastní záření Al-fólie bude odpovídat vlastnímu záření podkladu (rovnost teploty). Ze studeného povrchu je záření menší než z teplejšího okolí; tento nedostatek záření z daného směru pociťujeme tím, že z něj "čiší chlad".
Uvnitř materiálu (zdi, podlahy, omítky) má Al-fólie smysl jen potud,
pokud je tento materiál dostatečně prostupný pro sálání. Ta část energie
přenesená původně sáláním, která se v něm pohltí, se totiž dále přenáší
vedením a nebude fólií odrážena. Pro kvantitativní odpověď, kolik se
tedy tepla odrazí (uspoří), by bylo nutno vědět, o jaký materiál
konkrétně jde, a jak dalece je prostupný pro dlouhovlnné, tepelné záření.
Proti teplu šířícímu se vedením nepomůže, protože hliník výborně vede teplo vedením.
Teplo šířící se prouděním zastaví tím, že skrz souvislou Al-fólii nemůže žádná tekutina (přenášející teplo) proudit. Zde se ovšem neuplatní její materiál (hliník), ale její mechanická souvislost a tedy neprostupnost pro kapaliny a plyny.
Dotaz: Chci se zeptat jak se projeví na zvukových vlnách barva zvuku ve skutečnosti a
na grafu (Petr Zavadil)
Odpověď: Barva zvuku je dána obsahem vyšších harmonických a také obalovou křivkou. Nějak jednoduše to popsat nejde, nejlepší je použít vhodný program (třeba Goldwave) a podívat se na tentýž tón zahraný ladičkou (po eventuálním prvním "cinknutí" prakticky čistý základní tón, mírně tlumený) a na různé hudební nástroje, eventuálně i zpívaný tón. Čistý tón je zobrazen hladnou sinusoidou s pomalu se zmenšující amplitudou, tón "barevnější" má pestřejší, divočejší průběh.
Na druhou stranu, dva úplně různé průběhy mohou znít úplně stejně. Stačí si pustit dva čisté tóny s různým fázovým poměrem, třeba kvintu
sin 400t + 0,5 sin 800t
a porovnat s
sin 400t + 0,5 cos 800t.
Určitě Vám s tím poradí a pomůže Váš fyzikář na škole. Kdyby neměl čas, napište mi, a pošlu Vám hezký program vyvinutý na Západočeské univerzitě v Plzni, který na kombinaci několika málo prvních harmonických ukazuje necitlivost našeho ucha na fázové poměry, a jiný program (téhož původu), umožňující míchat, vidět a slyšet kombinaci až 30 harmonických.
Dotaz: Dobrý den, zajímalo by mě, v jaké vzdálenosti od naší sluneční soustavy by ještě
mohla vybuchnout průměrná supernova, aby takovýto jev neohrozil život na Zemi. Za
odpověď předem děkuji. S pozdravem Žáček (Jiří Žáček)
Odpověď: Odhaduje se, že pro život na Zemi by byl smrtící výbuch supernovy ve vzdálenosti méně než 30 světelných let. V současnosti se z potenciálních budoucích supernov nachází dostatečně blízko akorát hvězda Sírius (která je od nás nyní zhruba 9 světelných let daleko), než se však ze Síria v daleké budocnosti stane supernova, vzdálí se od nás - vlivem svého náhodného pohybu vůči Slunci - do bezpečné vzálenosti. Nelze však zcela vyloučit, že se ale zase jiná potenciální supernova v daleké budocnosti ke Sluneční soustavě naopak přiblíží.
Dotaz: Dobrý den, zajímalo by mě, zda dle nejnovějších poznatků je rychlost světla ve
vakuu c stále považována za "nejkonstantnější konstantu" ve vesmíru. Pokud ano,
existuje nějaké vysvětlení proč? (kromě poznatků na základě výsledků měření). Za
odpověď předem děkuji Žáček (Žáček)
Odpověď: Veškeré jevy se fyzika pokouší vysvětlovat podle teorií, které za tímto účelem vytváří. Některé teorie se brzy ukáží jako nevhodné, neodpovídající realitě, jiné po dlouhou dobu dobře vystihují pozorované jevy a umožňují takové jevy vypočítat, předvídat. Mezi tyto (zatím?) "úspěšné" teorie patří mimo jiné i teorie relativity, která konstantnost rychlosti světla ve vakuu vyžaduje. A jelikož nám teorie relativity dobře slouží (což se využívá v mnoha aplikacích, typicky třeba u družicové navigace GPS), domníváme se, že konstantní rychlost světla ve vakuu skutečně patří mezi základní konstanty.