FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 365 dotazů obsahujících »jev«

99) Geostacionární družice02. 04. 2007

Dotaz: Dobrý den chci se vás zeptat, když je družice geostacionární, tak to znamená, že kolem Země neobíhá nebo obíha, a za jakou dobu? Děkuji Michal. (Michal Čurda)

Odpověď: Geostacionární družice je taková družice, která, postaví-li se pozorovatel na rovníku přesně pod ní, bude stabilně viset zhruba 36 tisíc kilometrů nad jeho hlavou. Z pohledu pozorovatele na Zemi se tedy družice nehýbá, neobíhá. Podíváme-li se ale na celou situaci z vesmíru (jako naši vztažnou soustavu vezmeme systém okolních hvězd), zjistíme, že družice krouží okolo Země, a to stejně rychle, jako se Země otáčí okolo své osy (takže se otáčí okolo zemské osy i onen na rovníku stojící pozorovatel, nad jehož hlavou se družice stále nachází). Jedno otočení se okolo Zemské osy přitom trvá Zemi, pozorovateli i družici stejně, a sice 23 hodin, 56 minut a necelých 5 sekund.

Poznámka: Někoho možná zarazí, že jedno otočení Země okolo své osy netrvá přesně 24 hodin, ale o necelé 4 minuty méně... jak je tedy možné, že v běžném životě počítáme s 24 hodinami a neprojevují se nikde viditelně žádné chyby? Odpověď je jednoduchá, pro běžný život na Zemi je spíše než pohyb vůči hvězdám důležitý pohyb vůči Slunci. Zde se však ona rotace kombinuje ještě s každoročním oběhem Země okolo Slunce a právě tato kombinace obou jevů dohromady tvoří 24hodinový den, tak jak jej známe z běžného života.


Obrázek převzat z http://cs.wikipedia.org


Tato otázka byla součástí zadání astronomické olympiády, odpověď proto byla zveřejněna až po uzávěrce příslušného kola soutěže.

(Jakub Jermář)   >>>  

100) Barevně hořící svíčky20. 03. 2007

Dotaz: Dobrý den, známý si na dovolené v Itálii koupil sadu svíček. Jsou zajímavé tím, že mohou hořet různými barvami. Jednu z nich zapálil a hořela zeleným plamenem. Bylo to hodně zajímavé, ale nedokážu si vysvětlit, v čem je rozdíl od obyčejných svíček. Jaký materiál mohl být použitý? Předem děkuji za odpověď. S pozdravem Jan Feilhert. (Jan Feilhert)

Odpověď: Barvu plamene ovlivňuje nejčastěji přítomnost iontů kovů, které dodáním energie ve formě tepla přecházejí do stavu o vyšší energii. Při návratu zpět do stavu o nižší energii se přebytečná energie vyzáří ve formě charakteristicky zbarveného světla. S tímto jevem se obvykle setkáváme při ohňostrojích, využívá se též v chemii jako tzv. plamenové zkoušky k důkazu přítomnosti některých kationtů kovů.

Prakticky jde zřejmě o to, že knot svíčky na nasycen nejčastěji chloridy (ale v rachejtlích například i dusičnany) příslušných kovů - k červenému zbarvení se využívají sloučeniny lithia, vápníku či stroncia, k žlutému zbarvení chlorid sodný, k zelenému zbarvení chlorid měďnatý či dusičnan barnatý, následně i jejich kombinace. Přítomnost strontnatých a barnatých sloučenin může naznačit (pokud nemáte k dispozici přímo informace o složení) varování před jedovatostí výrobku, rozpustné sloučeniny strontnaté a barnaté jsou totiž silně toxické a zbytky po Sivestrovských ohňostrojích dokonce měřitelně kontaminují sníh, který následně může způsobit lehké otravy například u psů.

(Hanka Böhmová)   >>>  

101) Hexahydrát chloridu vápenatého20. 03. 2007

Dotaz: Moja otázka je viac praktického charakteru a dotýka sa možno viac chémie. Hexahydrát chloridu vápenatého nám po veµmi dlhom skladovaní prešiel do veµmi hustého roztoku. Pre praktické potreby by som ho potreboval mať v kryštalickom stave - ako by sa dal spätne vykryštalizovať? Dá sa udržať v tomto stave aj za bežných podmienok? (Kmeťo Ąudovit)

Odpověď: Tento jev znám bohužel z vlastní zkušenosti - jak u chloridu vápenatého, tak u dalších látek. Zkusila bych rozpustit po částech ve velkém množství horké vody a nechat volně vykrystalizovat, pokut máte čas se tím zabývat. Nevím, nakolik se dá rozpouštění krystalů ve vzdušné vlhkosti, případně ve vlastní uvolněné hydrátové vodě (?), zabránit, pomoci by mohla přítomnost sušidla ve skladovací nádobě (vlepit sáček se silikagelem do víka), které by pohlcovalo vznikající vlhkost.

(Hanka Böhmová)   >>>  

102) Mikrovlnné záření z pokrmu13. 03. 2007

Dotaz: Dobrý den. Mám prosím obavu o nezávadnost potravin ohřívaných v mikrovlnce. Není možné, že po jejich vyjmutí z trouby nějakou dobu vyzařují absorbované záření - mikrovlnná fosforescence? Děkuji, Martina (Martina K.)

Odpověď: Po vyjmutí ohřátého pokrmu z mikrovlnné trouby tento pokrm skutečně vyzařuje elektromagnetické záření. V případě pokrmu bude maximum intenzity záření kdesi v infračervené oblasti - tedy ve formě sálajícího tepla, méně pak bude zářit i v ostatních pásmech spektra, tedy i v mikrovlnné oblasti. Září totiž každý libovolným způsobem zahřátý objekt s nenulovou teplotou, včetně lidí. Fosforescence se objeví tehdy, dochází-li vnějším buzením k excitaci elektronů do energeticky vyšších metastabilních stavů a později k následnému vyzáření takto získané energie, obvykle ve viditelném světle či jeho blízkém okolí. S mikrovlnnou fosforescencí jako pojmem jsem se osobně pravděpodobně ještě nesetkal. Pokud její existenci připustíme, nemělo by mít takové zbytkové vyzařování pokrmu v mikrovlnné oblasti dle mého názoru na člověka žádný znatelný vliv, přinejmenším proto, že by šlo o jev zanedbatelné intenzity a nízkých energií, pravděpodobně srovnatelný s mikrovlnným zářením z okolí.

(Jakub Jermář)   >>>  

103) Rychleji než světlo07. 03. 2007

Dotaz: Zajímalo by mě jak je to s rychlostí světla v různých prostředích, pokud se tedy světlo láme na rozhraní dvou prostředí je to kvůli různým rychlostem světla v daných prostředích. Tzn., že světlo se zde šíří rychlostí menší než je rychlost c, jak se toto dá vysvětlit, když existuje zákon podle kterého se světlo stále pohybuje rychlostí c? A je tedy jen teoreticky možné světlo v prostředí, kde se pohybuje výrazně pomaleji předběhnout, ale samozdřejmě běžet rychlostí menší než c? (Mirek)

Odpověď: V látkových prostředích se světlo skutečně pohybuje pomaleji a to tím pomaleji, čím větší je index lomu daného prostředí. Zatím ve vakuu se světlo šíří rychlostí 299 792 458 m/s, například ve vodě je to už jenom něco málo přes 225 000 000 m/s. Princip konstantní rychlosti světla (c = 299 792 458 m/s), platí pouze ve vakuu, v látkovém prostředí může (a je) jeho rychlost menší. Nic hmotného se nemůže pohybovat ani stejně rychle ani rychleji než světlo ve vakuu, což ale vůbec neznamená, že by se to nemohlo pohybovat rychlostí vyšší, než je rychlost světla v daném prostředí. Pokud tedy například urychlíme elektron či třeba neutron na rychlost 99% c a strefíme se s ním do vody (přičemž rychlost světla ve vodě je zhruba 75% c), bude se tato částice pohybovat výrazně rychleji, než světlo v daném prostředí. Pohybující se částice při tom bude emitovat tzv. Čerenkovovo záření. Čerenkovovo záření (někdy též Čerenkovův efekt) bylo poprve pozorováno již roku 1934 ruským fyzikem Pavlem Alexejevičem Čerenkovem (1904-1990).

(Jakub Jermář)   >>>