FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 9 dotazů obsahujících »kapičky«

1) Zima po koupání15. 07. 2011

Dotaz: Proc kdyz vylezeme z vody,ktera je studenjsi nez vzduch, tak je nam zima? (Petra)

Odpověď: Dobrý den. Zima nám je, protože se z nás odpařují ulpívající kapičky vody a odebírají tak teplo z povrchu těla.
(Michal Kloc)   >>>  

2) Rozdíl mezi párou a mlhou29. 10. 2008

Dotaz: Jaký je rozdíl mezi vodní parou a mlhou? (ADELA ZITOVA)

Odpověď: Vodní pára je bezbarvý (lze tedy říct v podstatě neviditelný) plyn. To, co vidíme nad hrncem (a nesprávně tomu říkáme vodní pára) a mlha jsou ve skutečnosti nepatrné kapičky vody ve vzduchu (neboli aerosol).

(Jakub Jermář)   >>>  

3) Jak je velká duha18. 09. 2008

Dotaz: Dobrý den, jak vzniká duha víme, ale není nám jasné, proč má tvar oblouku. Je poloměr tohoto oblouku vždy stejný? Děkuji předem za odpověď (Lucie Zárubová)

Odpověď: Duha je optický jev, který se skládá ze světla různých barev přicházejících do oka (či jiného čidla) z různých směrů v důsledku odrazu slunečního světla na kapičkách deště. Aby došlo k těm "správným" (duhu tvořícím) odrazům, je třeba, aby se kapičky deště nacházely zhruba 42° (resp. okolo 50° pro sekundární duhu) odkloněny od osy Slunce-pozorovatel. Tuto podmínku splňuje kružnice (tedy přesněji hranice prostorového úhlu) se středem na ose Slunce-pozorovatel, na opačné straně, od pozorovatele, než je Slunce. Z letadla, vysoké věže, ... by tedy bylo možné pozorovat duhu jako kružnici (přesněji mezikruží) s rozměrem zhruba 85 úhlových stupňů (2x 42°).

(Jakub Jermář)   >>>  

4) Pára nad hrncem02. 03. 2008

Dotaz: Dobry den, chtel bych se zeptat, proc se z hrnce uvolnuje para, i kdyz se voda nevari, je to kvuli odparovani vody v kontaktu z rozpalenym hrncem? A potom by mne tajimalo proc se mnozstvi pary zvysi bezprostredne potom,co vypnu plyn na sporaku. Predem dekuji za odpoved (Michal Šárka)

Odpověď: Vypařování probíhá při libovolné teplotě, jeho míra ovšem s teplotou prudce roste. Jenže pozor, nezávisí jenom na teplotě, ale také na množství vody obsažené ve vzduchu nad hrncem (takzvané vlhkosti vzduchu).

Z mikroskopického hlediska si to můžete představit takto: Molekuly v kapalině i ve vzduchu se neustále chaoticky pohybují (tím rychleji, čím větší je teplota – ve skutečnosti je to spíše obráceně, totiž že čím rychlejší je chaotický pohyb částic, tím větší teplotu látka má). Některé částice při tomto pohybu "vyskočí" z kapaliny a stanou se součástí vodních par (vypařování), jiné (klidně současně) přejdou ze vzduchu do vody v hrnci (kondenzace). Obojí se děje neustále a vzhledem k obrovskému množství molekul v litru vody (řádově 1025) velmi mnohokrát každou sekundu. Je to vlastně difúze molekul plynu do kapaliny a obráceně.

Pokud častěji vyjdou molekuly z vody, než obráceně, pozorujeme to jako vypařování kapaliny &ndash její množství v hrci se zmenšuje, vlhkost okolního vzduchu naopak roste. Čím více je ale vodních par nad hrncem, tím častěji některé molekuly přejdou při chaotickém tepelném pohybu ze vzduchu zpátky do kapaliny. Vypařování se tedy zpomaluje.

Může se stát, že po čase vlhkost vzduchu vzroste natolik, že při dané teplotě (a tedy "hemživosti" částic) už do kapaliny vstoupí ze vzduchu za jednotku času právě tolik molekul, kolik jich kapalinu za stejný čas opustilo. Mluvíme o stavu dynamické rovnováhy (z makroskopického hlediska je to rovnováha, protože námi pozorovaná množství kapaliny a par se nemění, ale z mikroskopického hlediska i nadále dochází k vzájemnému míšení, jenže je to statisticky vzato "kus za kus" – proto dynamická rovnováha namísto statické rovnováhy). Takzvaná relativní vlhkost v tomto případě dosáhla 100 %.

Kdybychom nyní teplotu zvýšili, rovnováha by se opět porušila, relativní vlhkost by klesla pod 100 % a my bychom mohli pozorovat další vypařování. Funguje to i opačně. Pokud teplotu snížíme, může se relativní vlhkost zvýšit dostatečně k tomu, aby docházelo ke kondenzaci. Takto mohou vznikat drobné kapičky přímo ve vlhkém vzduchu (přesně tak vzniká déšť). Nad hrncem tyto drobné kapičky pozorujeme jako mlhu, laiky označovanou slovem "pára" (ve fyzice má slovo pára význam plynu, mlze &ndash tedy páře s kapičkami &ndash fyzikové někdy říkají "mokrá pára").

Voda tedy k tomu, aby se vypařovala, nemusí vřít. Nicméně při varu se vypařuje nejintenzivněji.

A proč pozorujeme mlhu nad hrncem bezprostředně po vypnutí plynu? Domnívám se, že je to právě kvůli onomu náhlému snížení teploty. Tím vzroste relativní vlhkost vzduchu nad hrncem a pára začne kondenzovat do drobných kapiček, což pozorujeme jako mlhu. Stejný jev nastavá v zimě, kdy nám jde "pára" (tedy mlha) od úst.

O mikroskopickém pohledu na vypařování jsme zde už jednou psali, můžete se podívat sem. Pokud vás zajímá více o varu, rovněž o tom jsme zde už psali, klikněte sem.

(Pavel Böhm)   >>>  

5) Kroupy i bez bouřky?23. 04. 2007

Dotaz: Mohou se tvořit kroupy bez bouřky? (denda)

Odpověď: Je rozdíl mezi bouří a bouřkou. Bouřkou se v meteorologii označuje souhrn elektrických a akustických jevů (blesky, hřmění…), které s vznikem a vývojem krup v podstatě nesouvisí, i když se mohou vyskytovat společně. Pokud ale ke tvorbě krup dojde, je to v rámci bouře i když ne každá bouře je nutně spojená s tvorbou krup. Aby se z oblačných částic (kapiček) začaly vytvářet kroupy, musí oblak sahat do výšek, kde je teplota nižší než 0 °C a zároveň v jeho nitru dochází k intenzivním výstupným pohybům. Mezi hladinou 0 °C a přibl. -40 °C jsou v oblaku jak částice ledu (zmrzlé kapičky), tak přechlazené vodné kapičky (s teplotou sice už nižší než 0 °C, ale ještě pořád v kapalném stavu). V tomto rozmezí teplot při srážce ledových částic s kapalnými dochází k namrznutí vody na ledovou částici, která takto narůstá a na své cestě vzhůru nebo dolů - když je už dostatečně těžká, tímto způsobem „nabaluje“ další „slupky“. Při své cestě na zemský povrch začne tát, ale je-li dostatečně velká, dopadne jako kroupa. V našich zeměpisných šířkách v podstatě každá dešťová kapička byla původně ledem, jenomže stihla roztát.

(Alžbeta Demeterová)   >>>