Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 9 dotazů obsahujících »kapičky«
2) Rozdíl mezi párou a mlhou
29. 10. 2008
Dotaz: Jaký je rozdíl mezi vodní parou a mlhou? (ADELA ZITOVA)
Odpověď: Vodní pára je bezbarvý (lze tedy říct v podstatě neviditelný) plyn. To, co vidíme nad hrncem (a nesprávně tomu říkáme vodní pára) a mlha jsou ve skutečnosti nepatrné kapičky vody ve vzduchu (neboli aerosol).
Dotaz: Dobrý den, jak vzniká duha víme, ale není nám jasné, proč má tvar
oblouku. Je poloměr tohoto oblouku vždy stejný? Děkuji předem za odpověď (Lucie Zárubová)
Odpověď: Duha je optický jev, který se skládá ze světla různých barev přicházejících do oka (či jiného čidla) z různých směrů v důsledku odrazu slunečního světla na kapičkách deště. Aby došlo k těm "správným" (duhu tvořícím) odrazům, je třeba, aby se kapičky deště nacházely zhruba 42° (resp. okolo 50° pro sekundární duhu) odkloněny od osy Slunce-pozorovatel. Tuto podmínku splňuje kružnice (tedy přesněji hranice prostorového úhlu) se středem na ose Slunce-pozorovatel, na opačné straně, od pozorovatele, než je Slunce. Z letadla, vysoké věže, ... by tedy bylo možné pozorovat duhu jako kružnici (přesněji mezikruží) s rozměrem zhruba 85 úhlových stupňů (2x 42°).
Dotaz: Dobry den, chtel bych se zeptat, proc se z hrnce uvolnuje para, i kdyz se voda
nevari, je to kvuli odparovani vody v kontaktu z rozpalenym hrncem? A potom by
mne tajimalo proc se mnozstvi pary zvysi bezprostredne potom,co vypnu plyn na
sporaku. Predem dekuji za odpoved (Michal Šárka)
Odpověď: Vypařování probíhá při libovolné teplotě, jeho míra ovšem s teplotou
prudce roste. Jenže pozor, nezávisí jenom na teplotě, ale také na
množství vody obsažené ve vzduchu nad hrncem (takzvané vlhkosti vzduchu).
Z mikroskopického hlediska si to můžete představit takto:
Molekuly v kapalině i ve vzduchu se neustále chaoticky pohybují (tím
rychleji, čím větší je teplota – ve skutečnosti je to spíše
obráceně, totiž že čím rychlejší je chaotický pohyb částic, tím větší
teplotu látka má). Některé částice při tomto pohybu "vyskočí" z kapaliny
a stanou se součástí vodních par (vypařování), jiné (klidně současně)
přejdou ze vzduchu do vody v hrnci (kondenzace). Obojí se děje neustále
a vzhledem k obrovskému množství molekul v litru vody (řádově
1025) velmi mnohokrát každou sekundu. Je to vlastně difúze
molekul plynu do kapaliny a obráceně.
Pokud častěji vyjdou molekuly z vody, než obráceně, pozorujeme to jako
vypařování kapaliny &ndash její množství v hrci se zmenšuje, vlhkost
okolního vzduchu naopak roste. Čím více je ale vodních par nad hrncem,
tím častěji některé molekuly přejdou při chaotickém tepelném pohybu ze
vzduchu zpátky do kapaliny. Vypařování se tedy zpomaluje.
Může se stát, že po čase vlhkost vzduchu vzroste natolik, že při dané
teplotě (a tedy "hemživosti" částic) už do kapaliny vstoupí ze vzduchu
za jednotku času právě tolik molekul, kolik jich kapalinu za stejný čas
opustilo. Mluvíme o stavu dynamické rovnováhy (z makroskopického
hlediska je to rovnováha, protože námi pozorovaná množství kapaliny a
par se nemění, ale z mikroskopického hlediska i nadále dochází k
vzájemnému míšení, jenže je to statisticky vzato "kus za kus" –
proto dynamická rovnováha namísto statické rovnováhy). Takzvaná
relativní vlhkost v tomto případě dosáhla 100 %.
Kdybychom nyní teplotu zvýšili, rovnováha by se opět porušila, relativní
vlhkost by klesla pod 100 % a my bychom mohli pozorovat další
vypařování. Funguje to i opačně. Pokud teplotu snížíme, může se
relativní vlhkost zvýšit dostatečně k tomu, aby docházelo ke kondenzaci.
Takto mohou vznikat drobné kapičky přímo ve vlhkém vzduchu (přesně tak
vzniká déšť). Nad hrncem tyto drobné kapičky pozorujeme jako mlhu, laiky
označovanou slovem "pára" (ve fyzice má slovo pára význam plynu, mlze
&ndash tedy páře s kapičkami &ndash fyzikové někdy říkají "mokrá pára").
Voda tedy k tomu, aby se vypařovala, nemusí vřít. Nicméně při varu se
vypařuje nejintenzivněji.
A proč pozorujeme mlhu nad hrncem bezprostředně po vypnutí plynu?
Domnívám se, že je to právě kvůli onomu náhlému snížení teploty. Tím
vzroste relativní vlhkost vzduchu nad hrncem a pára začne kondenzovat do
drobných kapiček, což pozorujeme jako mlhu. Stejný jev nastavá v zimě,
kdy nám jde "pára" (tedy mlha) od úst.
O mikroskopickém pohledu na vypařování jsme zde už jednou psali, můžete
se podívat sem.
Pokud vás zajímá více o varu, rovněž o tom jsme zde už psali, klikněte
sem.
Odpověď: Je rozdíl mezi bouří a bouřkou. Bouřkou se v meteorologii označuje souhrn elektrických a akustických jevů (blesky, hřmění…), které s vznikem a vývojem krup v podstatě nesouvisí, i když se mohou vyskytovat společně. Pokud ale ke tvorbě krup dojde, je to v rámci bouře i když ne každá bouře je nutně spojená s tvorbou krup. Aby se z oblačných částic (kapiček) začaly vytvářet kroupy, musí oblak sahat do výšek, kde je teplota nižší než 0 °C a zároveň v jeho nitru dochází k intenzivním výstupným pohybům. Mezi hladinou 0 °C a přibl. -40 °C jsou v oblaku jak částice ledu (zmrzlé kapičky), tak přechlazené vodné kapičky (s teplotou sice už nižší než 0 °C, ale ještě pořád v kapalném stavu). V tomto rozmezí teplot při srážce ledových částic s kapalnými dochází k namrznutí vody na ledovou částici, která takto narůstá a na své cestě vzhůru nebo dolů - když je už dostatečně těžká, tímto způsobem „nabaluje“ další „slupky“. Při své cestě na zemský povrch začne tát, ale je-li dostatečně velká, dopadne jako kroupa. V našich zeměpisných šířkách v podstatě každá dešťová kapička byla původně ledem, jenomže stihla roztát.
Dotaz: Dobrý den, díky za pěkné stránky. Zde je můj dotaz: Na kolejích jsem měl sorpční
lednici, která chladila až mrazila. Teplotu jsme neměřili, ale někdy jsme
vyndali veci zmrzlé a jindy ne. Několikrát se mi stalo, že jsem vodu (vodovodní)
v PET lahvi vytáhl z lednice a voda byla v tekutém stavu. V okamžiku, kdy jsem
PET lahev otevřel voda během 1-2 sekund zmrzla. Krásně prokrystalizovala v celém
objemu. Podobným způsobem, jako když lupnutím aktivujete takové ty ohřívací
polštářky. Podmínky: lednice - sorpční, zavřená ve skříni PET laveh - takový ten
měkčí typ, objem 2 litry, ležíci v lednici na výparniku, úplně plná nebo téměř
plná. Zajímalo by mě, při jakých podmínkách to nastává. Kam se ztratí energie
potřebná ke změně skupenství? Jak mohu tento stav reprodukovat? Jestli si dobře
pamatuji tak energie potřebná ke změně skupenství je zhruba stokrát vyšší než ke
změně teploty kapaliny o 1C. Takže vodu podchladím, jakoby na -100C a pak se mi
přemění na led o teplotě 0C. (Jaroslav Bernkopf)
Odpověď: Voda, kterou jste vyndal z chladničky, se podle všeho nacházela v tzv. metastabilním stavu, kdy je její teplota sice už pod nulou, ale stále ještě zůstává celá v kapalném skupenství. Tento stav je tím méně pravděpodobný, čím většího přechlazení dosáhnete, případně čím více vody v nádobě máte. S dvoulitrovou PET láhví lze znatelného přechlazení dosáhnout zřídka - a když, tak pouze o několik málo stupňů Celsia. Menší množství vody (řekněme 1 ml) lze ovšem snadno přechladit i na teplotu -10 °C a méně. Drobné kapičky se dají přechladit až o desítky stupňů Celsia!
Přechlazená kapalina je nestabilní. Přítomnost rušivých vlivů (nečistoty, otřesy) a další chlazení zvyšují společně šanci, že kapalina samovolně přejde do stabilnějšího stavu - zmrzne.
Mrznutí začne tím, že se někde v objemu kapaliny (typicky na stěnách nebo částečkách nečistot) objeví první krystalek ledu. Ten velmi rychle roste v jakousi dendritickou strukturu prolínající se celou kapalinou, což je ono vámi pozorované rychlé prorůstání krystalků. Tím se ovšem uvolňuje latentní krystalizační teplo ohřívající zbytek přechlazené kapaliny. Teplota přechlazené vody tak během této "bouřlivé" krystalizace po zlomku sekundy až několika málo sekundách vzroste na teplotu tuhnutí (0 °C). Sem se tedy "ztratí" ona pohřešovaná energie. Zbytek kapaliny tuhne již běžným způsobem.
V přiloženém grafu je zachycen průběh teploty v reálném experimentu, který probíhal s 1 ml destilované vody, jejíž počáteční teplota byla přibližně 1 °C. Z grafu lze vyčíst, že se voda v tomto experimentu přechladila o více než 10 °C, načež během velice krátkého okamžiku prorostla zmíněnou dendritickou ledovou strukturou za součásného vzrůstu teploty na 0 °C. "Domrzání" potom trvalo ještě asi minutu a dvacet sekund. Teplota okolí byla přibližně -17 °C.