FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 11 dotazů obsahujících »kmitat«

7) Proč jsou látky průhledné?04. 06. 2003

Dotaz: Dokázal již někdo přijatelně vysvětlit proč jsou některé látky průhledné a průsvitné? Jak procházejí fotony hmotou? Nezdá se mi, že by šlo o postupné předávání vlnění z čelní plochy skrz až na plochu výstupní. Dopadající fotony přece nemají takovou energii, aby dokázaly rozkmitat celou tlošťku a navíc (u látek průhledných) bez zkreslení. Jak to ty fotony dělají? (Pavel Dombrovský)

Odpověď: Vaše formulace se mi zdá být zatížena takovou "materiální" představou fotonů jako kuliček z něčeho zformovaných - třeba střel, které si mají prorazit cestu "nepřátelským územím". Ale tomu tak není. Realitě je stejně blízká představa, že foton je pomluva, která se šíří mezi lidmi - vzruší je (rozkmitá je), oni ji předají dál, a zapomenou na ni. I toto je samozřejmě jen příměr.
Chcete-li hlubší fyzikální obraz, podle kterého by taky šlo něco spočítat, pak nezbyde než sáhnout po nějaké učebnici fyzikální optiky. Z hlediska kvantové teorie je to všecko jednak složitější, jednak jednodušší. Zavádíme tzv. účinný průřez pro to, abychom jednoduše popsali "velikost terče" při interakci (srážce); průběh srážky se počítá kvantově, ale o tom nemá smyslu mluvil takhle "letmo". Taky foton (coby kvantovaná elektromagnetická vlna) v látkovém prostředí je "něco jiného" než foton ve vakuu - v látce se prostě na elektromagnetických kmitech E, B "přiživí" i nabité částice tvořící látku (jádra, elektrony). Proto vychází ustálená rychlost menší než c. Rozbor přechodových jevů je dosti složitý i klasicky (viz např. Stratton: Teorie elektromagnetického pole).
Mimochodem, takové neutrino dokáže proletět Zeměkoulí s velice vysokou pravděpodobností, že se vůbec neodchýlí.
(J.Obdržálek)   >>>  

8) Proč praskne láhev?04. 12. 2002

Dotaz: Proč dojde k prasknutí láhve,zmrzne-li v ní voda? (Petr)

Odpověď: Milý Petře, Váš dotaz souvisí s roztažností látek. Určitě víte, že všechny látky jsou složeny z atomů. Když látku zahřejete, začnou atomy kmitat rychleji, jejich kmity "zabírají" více prostoru a atomy se tak od sebe vzdalují. Všechny látky se při zahřátí roztahují. Ale různé látky různě. Při ochlazení se potom naopak smršťují. Ale voda se chová jinak!!! Váš příklad to dokazuje. Led má větší objem než voda, ze které vznikl (má tedy o trochu nižší hustotu). Voda se při zahřátí z 0°C chová neobvykle. Při vzrůstu teploty z 0°C na 4°C se totiž smršťuje. Od 4°C se dále roztahuje jako všechny ostatní kapaliny. Při teplotě 4°C zabírá voda nejmenší objem, má tedy největší hustotu a je-li obklopena teplejší nebo studenější vodou, bude klesat ke dnu. Proto v zimě voda v rybnících a řekách zamrzá na povrchu, ale u dna se stále udržuje voda o teplotě asi 4°C, v níž přezimují ryby a jiní vodní živočichové. Podívejte se na web a zkuste tam najít zajímavé články o vodě.
(M.Urbanová)   >>>  

9) Kmitání fotonů13. 05. 2002

Dotaz: Dá sa povedat že: Intenzita je výkon, kolik energie za jednotku času vyzarime, zatimco frekvence je typ svetla, v prípadě viditelného svetla jeho barva. V prípadě rádiových vln je to to, co ladíte na rádiu, frekvence udává počty kmitů za sekundu, ale nerika, jak silne kmitaji, jen jak rychle. Fotony kmitaju predsa stale ryczhlostou svetla? Dalo by sa to vysvetlit aj rozdielnou rychlostou kmitania. Ked si predstavite , ze svetelna vlna sa siri rovnobezne po povrchu stola z jedneho konca na druhy. A fotony v tejto vlne kmitaju nahoru a dolu, teda kolmo na povrch stola. A ked kmitaju pomalsie ako sa svetlo siri a drahu jednotlivych fotonov si zakreslite v case dostanete pomale radiove vlny. A ked kmitajú rychlejsie ako sa svetlo siri! , teda rychlejsie ako "c" ich draha bude vyzerat ako rychle vysokoenergeticke kmity gama paprskov s kratkou vlnovou dlzkou. Takze ako to je môzu kmitat fotony rychlejsie alebo pomalsie ako rychlost svetla? (Marek K.)

Odpověď: Věta "Fotony kmitajú predsa stále rychlosťou svetla" nedává smysl. Fotony nejsou kuličky na gumičce, které by kmitaly kolmo ke gumičce v klidu (a tedy kolmo ke směru šíření), aby se dalo uvažovat o jejich rychlosti ve směru kolmém k šíření vlny. Gumička (bez jakýchkoliv kuliček) zobrazuje pole jako jakýsi "stav napjatosti protostoru", který je "napjatý" (tj. je tam nenulová intenzita E elektrického pole resp. indukce B magnetického pole) někde a někdy víc, jinde a jindy méně, a tyto změny se dějí úhlovou rychlostí (počet kmitů za dobu), a nikoli posupnou rychlostí (dráha za dobu), která je pro světlo ve vakuu vždy rovna c, tj. zhruba 300 000 000 km/s. "Kuličky" (fotony) se tam neuplatňují jinak, než tím, že energie gumy (pole) se mění jen v určitých dávkách (kvantech). Fotony tedy nekmitají, ale řekněme, že každý z nich, jak tak letí (rychlostí světla ve směru šíření vlny), má svou barvu, která odpovídá frekvenci kmitů. Představte si, že mají barvu, a navíc pro nás pro teď třebas střídavě světlají a tmavnou s touto frekvencí, tj. jeden kmit jim trvá dobu T. Pokud byste si značili jejich na cestě (kudy letí) body, kde měly barvu nejsilnější, pak dvě značky na cestě budou vzdáleny o délku L vlny. Ta je rovna L = c.T, kde T je doba kmitu. Modrý foton bude mít tuto vzdálenost zhruba poloviční oproti červenému, třebaže se šíří ve vakuu přesně stejně rychle. Jenže ten modrý kmitá rychleji.
(J. Obdržálek)   >>>  

10) Zvuk ve vakuu?15. 03. 2002

Dotaz: Šíří se zvuk ve vakuu? Jestli ano, jakou rychlostí? Jestli ne, tak proč? (Hanicka Sojkova)

Odpověď:

Odpověď: Zvuk se šíří POUZE ve hmotném prostředí (to které obsahuje nějaké částice). Je to podélné vlnění (představte si to např. jako řadu lidí (částic prostředí) první člověk se začne kývat ve směru a proti směru řady, rozkývá tak dalšího, který stojí za ním, ten rozkývá dalšího atd. Tímto způsobem se šíří zvuk od zdroje zvuku do prostředí. Ve vakuu žádné částice nejsou, proto se zvuk ve vakuu nešíří. Není tam totiž nic, co by mohlo kmitat. Pěkný pokus na důkaz tohoto tvrzení - do vývěvy dát zvonící zvonek (viz. obrázek). S vyčerpáním vzduchu zmizí i zvuk zvonku, i když zvonek dál zvoní (vidíte, jak sebou zběsile škube, přesto nic neslyšíte).
O rychlosti zvuku v různých prostředích se můžete dočíst v dalších dotazech tohoto archivu.

(M. Urbanová)   >>>  

11) Index lomu světla15. 03. 2002

Dotaz: Proč je index lomu světla různý pro různé barvy (na tom stejném rozhraní mezi prostředími)? Je rychlost šíření světla prostředím ovlivněna vlnovou délkou? A jestli ano, tak proč? (Jan Toušek)

Odpověď: Je to tak. A je velmi zajímavé (a vůbec ne jednoduché) rozebrat, proč je vlastně rychlost světla v hmotném prostředí jiná než ve vakuu. Jakmile zjistíme, proč je jiná, pak už tolik nepřekvapí, že je "jinak jiná" pro různé frekvence.
Mechanismus šíření světla v hmotném prostředí je takový: prostředí sestává z kladně i záporně elektricky nabitých částic, které mají úhrnný náboj (prakticky) nulový a jsou víceméně v dynamické rovnováze. Můžeme si představit, že elementární části látky jsou elektrické dipóly (např. kladné jádro + záporné elektrony kolem). Dopadne-li na látku světlo, pak z mikroskopického hlediska přišlo střídavé elektromagnetické pole (vlna) o frekvenci f. Dipól je nucen pod vlivem elektrického pole kmitat (a měnit svůj elektrický moment), protože na zápornou část působí opačná síla než na kladnou (rozměry dipólu jsou mnohem menší než vlnová délka světla). Ovšem pokud elektrický dipól kmitá, pak vyzařuje elektromagnetické vlny stejné frekvence, jakou kmitá (Rayleighův rozptyl - NIKOLI Comptonův, kde vyzařuje frekvenci jinou než přijal). Je to tedy jakési "pošli to dál", ale s jistým zdržením: dipól je tvořem hmotnými (nabitými) částicemi a ty mají samozřejmě jistou setrvačnost. Nakonec to dopadne tak, že rozkmitaná látka vyzařuje vlny, které se skládají s dopadající vlnou a ustáleným výsledkem je to, že se dopředu šíří nová vlna téže frekvence, ale pomaleji. (Tedy v látce s jinou vlnovou délkou než ve vakuu.) Jakmile přijmete tento rozbor, pak vám nebude moc divné, že to "zdržení" bude pro různé frekvence různé (tomu se říká disperze světla) v závislosti na vnitřní struktuře látky, na vlastních frekvencích částí tvořících látku apod.
(J.Obdržálek)   >>>