Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 117 dotazů obsahujících »nějaký«
109) Umělé družice
06. 05. 2002
Dotaz: Nemůžu nikde najít základní informace o umělých družicích, mám z toho dělat referát... nevíte o nějakých webových stránkách na tuto tématiku? (Petra Janečková)
Dotaz: Je rozdíl mezi rychlostí ohřevu stejného množství vody o 1 stupeň (např. z 10 na 11 oproti z 20 na 21). Samozřejmě za předpokladu stejných podmínek v obou případech.
(Tomáš Sedláček)
Odpověď: Ohřev se běžně děje stykem s nějakým teplejším tělesem, plotýnkou, ponorným vařičem, plamenem apod. Přitom přenos tepla je tím intenzivnější, čím větší je rozdí topného elementu a ohřívaného tělesa. Z toho plyne, že principielně bude ohřev z 10 stupňů na 11 za daných podmínek snadnější (rychlejší), než z 20 na 21. Je ovšem jasné, že pro relativně vysoké teploty ohřívače bude tento rozdíl zanedbatelně malý. Když ale budeme držet v ruce sklenici s nápojem, aby nebyl pro pití moc studený, bude rozdíl v toku tepla měřitelný, jak si můžete sám vyzkoušet.
Dotaz: Podle speciální teorie relativity se s vzrůstající rychlostí zvyšuje hmotnost pohybujícího se objektu (vůči pozorovateli, který je v klidu). Mění se tedy i gravitační síla, kterou působí těleso (resp. platí Newtonův gravitační zákon, nebo to nějak postihuje obecná relativita)?
(Zdeněk)
Odpověď: Máte-li obecně
nějaký složitý systém, ve kterém jsou různé hmoty a
libovolně rychle se vůči sobě pohybují, je potřeba
aplikovat obecnou teorii relativity. V některých případech je
to ale jednodušší. Když budete mít (skoro) plochý prostor,
tj. např. daleko od Slunce, pak stačí uvažovat Newtonův
zákon a testovací tělísko uvažovat s hmotnosti, která
odpovídá jeho rychlosti. Když se však například ke Slunci
přiblížíte (plochý prostor přestane být ideální
aproximace), máte šanci vidět odchylky od newtonovské
gravitace - fotony se například v poli ohnou dvakrát více,
než by odpovídalo newtonovskému přitahování fotonů s
hmotností odpovídající jejich energii. Tento faktor 2 je
specifický pro Einsteinovu OTR a je jiný pro některé další
alternativní teorie (různé teorie různě pojednávají
geometrii prostoru).
Dotaz: Existuje ještě nějaký zcela náhodný fyzikální děj kromě radioaktivního rozpadu? (Tomáš Buchta)
Odpověď: Striktně vzato, skutečnou náhodu vnáší do fyziky pouze
kvantová mechanika, respektive ta její část, která souvisí
s procesem, kterému říkáme kvantové měření. Není to jen
radioaktivní rozpad, ale mnoho dalších procesů, kdy se
sledovaný kvantový systém chová statisticky - vykazuje cosi,
čemu říkáme kvantové fluktuace. Teorie je schopna
předvídat všechny možné statistické charakteristiky těchto
procesů, např. střední hodnoty, středni kvadratické
odchylky od těchto hodnot atd., jen ne to, která konkrétní
hodnota bude v danou chvíli skutečně naměřena. To je podle
kvantové teorie fundamentálně náhodné (v mezích daných
předpovězeným rozdělením pravděpodobnosti). Einstein to
kdysi lapidárně vyjádřil tak, že podle kvantové mechaniky
"Bůh hraje v kostky."
Vzniká ovšem otázka, zda se i teoreticky zcela
deterministické procesy nemohou někdy jevit jako procesy
víceméně náhodné. To, jaké bude počasí v Praze letos o
Velikonocích, by mohlo posloužit jako dobrá ilustrace. Pohyby
vzdušných mas se dozajista řídí krásnými a
deterministickými rovnicemi fluidní mechaniky, jenže při
neúplné znalosti momentálního stavu ovzduší není možné
počasí s takovou přesností na tak dlouho dopředu
předvídat. I velmi malá změna momentálních podmínek
(která je pod hranicí přesnosti prováděných měření)
totiž může způsobit zcela zásadní změny v dlouhodobé
předpovědi. Říká se tomu efekt motýlích křídel. Existuje
celá disciplína zabývající se podobně
"patologickými" systémy klasické mechaniky - mluví
se zde o tzv.deterministickém chaosu - a je to velmi krasná
disciplína...
Na závěr bych ještě chtěl poznamenat, že
někdy je náhodu opravdu těžké rozeznat od nenáhody. Když
třeba vezmete jednotlivé cifry čísla pí a budete se snažit
zjistit, jestli se chovají "statisticky" nebo
"pravidelně", zjistíte - pravděpodobně ke svému
značnému údivu -, že neexistuje prakticky nic, co by
naznačovalo, jak jednoduchým algoritmem bylo toto číslo
vygenerováno (zkuste na to napsat počítačový program - bude
kratký!). Na první pohled se zdá, že i to staré dobré pí
je úplně náhodné číslo...
Dotaz: Gravitace prý není nic jiného, než deformace prostoru (a času) vlivem hmotnosti tělesa. Často bývá vysvětlována na příkladu plátka a kulečníkové koule. Všichni víme, co se stane, když se plátno ve všech směrech napne - velký důlek se zmenšuje až skoro zmizí. Má tedy i rozpínání vesmíru (prostoru) nějaký vliv na gravitaci těles? Nebo je nesmyslná otázka? (Marek Voltner)
Odpověď: Ona ilustrace "plátna a koule" je jen názorným
přiblížením poněkud složitější situace: podle
Einsteinovy obecné relativity (podle níž lze gravitační
působení vysvětlit deformací prostoročasu) je zdeformován
příslušným způsobem třírozměrný prostor spolu s
jednorozměrným časem. Zakřivení je tedy složitější co do
struktury a ona analogiie se zdeformovanou dvojrozměrnou plochou
představuje jen jeden z několika možných "řezů"
tímto zakřiveným čtyřrozměrným kontinuem. Nicméně, ve
Vašem dotazu uvádíte, že při "natahování
plátna" se bude důlek zmenšovat a tedy křivost zanikat.
Podle analogie by se měla zmenšovat gravitace. V podstatě lze
říci, že máte pravdu a analogie v jistém smyslu opravdu
platí: při rozpínání vesmíru se galaxie od sebe vzdalují,
jejich vzájemné gravitační působení se zmenšuje a
odpovídající zakřivení prostoročasu mezi nimi klesá.