Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 117 dotazů obsahujících »nějaký«
47) Zhasínat žárovky nebo je nechat svítit?, Plazma lampy
08. 04. 2004
Dotaz: Dobrý den, v poslední době jsem několikrát slyšel, že při zapínání a vypínání
žárovky nebo jiných el. spotřebičů se spotřebuje více energie než kdyby žárovka
svítila. Zajímalo by mě jestli je to pravda a jak si můžu případně vypočítat
dobu kdy je už výhodnější žárovku vypnout než ji nechat svítit. Pak by mě ještě
zajímalo na jakém principu fungují tzv. plazma lampy, které vyzařují "blesky" a
pokud se jich člověk dotkne tak se všechny paprsky soustředí do místa dotyku.
Děkuji za odpověď. (Viktor Branecký)
Odpověď: Patrně máte na mysli skutečnost, že studené vlákno žárovky má menší odpor než
horké. To vede k tomu, že po zapnutí teče žárovkou po zlomek sekundy větší proud
než potom při stálém svícení. Prakticky podstatné je to asi jenom v tom, že
takto namáhané vlákno se při zapnutí občas přepálí (častěji než při svícení).
Když zapínáte nějaký motor, také na rozběh potřebujete větší okamžitý výkon.
Takovýmto počátečním proudovým nárazům se můžete bránit elektronikou, která se
postará o plynulý náběh. "Plazma lampy" fungují tak, že pomocí vysokého napětí
s vysokou frekvencí ionizujete inertní plyn v kouli, ruka na kouli znamená
"elektrodu" s kapacitní vazbou přes sklo koule. Podrobněji například na
stránce http://www.powerlabs.org/plasmaglobes.htm a dalších, klíčová slova jsou
například "plasma globe".
48) Heisenbergův princip a nedokonalost měřících přístrojů
23. 03. 2004
Dotaz: Dobrý den, zajímalo by mě zda-li Heisenbergův princip neurčitosti nevchází v
potaz právě jen proto, že naší dostupnou technikou nejsme schopni měřit současně
polohu a hybnost. Protože vyšleme-li např. v elektronovém mikroskopu proud
elektronů, abychom pozorovali nějakou částici (velikosti blízké vlnové délce
hmotné vlny elektronu), může docházet k předávání energie a tudíž pozorovaná
částice obohacená o tuto energii se z původního místa "vystřelí" pryč. Děkuji (František)
Odpověď: K Heisenbegovu principu neurčitosti můžete dojít rozborem různých konkrétních
situací, ve kterých se vždy ukáže (nezávisle na konkrétní technické realizaci),
že měření souřadnice nebo hybnosti nějakým způsobem ovlivní druhou veličinu
(samozřejmě v podmínkách mikrosvěta). Tato zkušenost je zabudována do teorie,
která aspiruje na popis mikroskopických jevů - do kvantové mechaniky - a hraje v
ní docela podstatnou roli. Když pak už máte v ruce kvantovou mechaniku,
zjistíte, že podobně by se měly chovat i jiné páry veličin, například i dvojice
složek momentu hybnosti, což znamená, že vlastně nemůžete přesně určit moment
hybnosti jako vektor (tedy přesně současně určit jeho tři složky). To se zdá být
překvapivé, ale tady teorie perfektně souhlasí s experimentem. Podívejte se do
nějaké knihy o kvantové mechanice na diskusi měření. Jednoduše řečeno, každé
měření nějak ovlivňuje měřený systém. To je v životě naprosto běžné, např. abych
zjistil chuť dortu, musím ho kousek sníst. To jen v klasické fyzice se kocháme
abstrakcí, že vliv měření je možné učinit zanedbatelně malým.
Dotaz: Dobrý den, chtěl bych pro své studenty na střední škole udělat jednu hodinu o
družicích. Již jsem našel pár informací, ale chtěl jse požádat, zda nemáte
nějaký typ na zajímavé stránky o této problematice, které bych mohl využít pro
větší zajímavost. Mnohokrát děkuji (Josef Horalek)
Odpověď: Z českých stránek o družicích je možné najít obsáhlou a aktualizovanou Malou encyklopedii kosmonautiky
(http://mek.kosmo.cz/index.htm) a také Encyklopedii družic na stránkách Akademie věd ČR (http://www.lib.cas.cz/knav/space.40/).
Více stránek o družicích najdete samozřejmě v angličtině.
Určitě zajímavé jsou stránky http://www.heavens-above.com/. Nejprve musíte
projít přes přihlašovací stránku, kde si z velké databáze míst najdete své
pozorovací místo (databáze je skutečně impozantní, najdete v ní i malé české vísky). Přesnější zadání místa je dobré při hledání přesného času
záblesků družic Iridium (Iridium Flares). Po projítí vstupních údajů je
možné listovat seznamem satelitů (třeba podle jména či roku vypuštění). Pak
lze získat informace o dráze satelitu a jeho průletu nad místem pozorování.
Máte-li možnost promítnout něco z PC, pak je pěkný program SatScape, který
zobrazuje i v 3D okamžitý stav satelitů (stáhnout ho lze na
http://www.slunecnice.cz). Pokud jde o informace o družicích, tak na stránkách NASA (http://www.nasa.gov) je najdete pod Missions, a poté Looking At Earth, případně Nasa Missions Timeline. Ale
nejsou tak pěkně strukturované. A na stránkách ESA (http://www.esa.int) je najdete pod pojmem Space Science, a potom dole Science Missions.
Pro pouze geostacionární družice existuje stránka http://www.goes.noaa.gov/.
A na stránce http://liftoff.msfc.nasa.gov/academy/rocket_sci/satellites/ lze najít informace o prakticky všech přibližně 8000 umělých satelitech. Pokud začnete sám hledat stránky s pojmem "satellite", narazíte určitě na další spoustu různě zajímavých odkazů. Například ve vědeckém centru Tech Museum v San José pořádají právě výstavu o družicích, která má své doprovodné stránky, na nichž se mladší zájemci o tuto problematiku dozví, jaké typy družic existují, z čeho se skládají, jaké funkce vlastně plní a mohou si schematicky zkusit sestavit jednoduchou družici.
Kromě umělých družic můžete samozřejmě hledat také přirozené družice Země.
50) Mechanický model napětí, zesilovače a střídavého proudu
23. 01. 2004
Dotaz: Prolétl jsem články o elektřině a magnetismu, ale to co jsem hledal, jsem nenašel. Vždy se dovídám dogmata.
1.) Tak např. vždy používáte el. napětí. Do obvodu musíme zavést el. napětí, aby mohl téct proud. Ten ale téct vůbec nemusí.. tomu nerozumím, co je tedy el. napětí, resp. jak si ho představit (a to na molekulární úrovni -
pokud tak lze).
2.) V učebnici Elektřina a magnetismus pro střední školy je zakreslen obvod s
tranzistorem - obr. "Tranzistorový zesilovač"- podobný lze nalézt i jinde (i ve
skriptech elektroniky). Vždy tam je řečeno, že na výstupu je obrácená fáze
napětí, ale proč to tak je? Fyzikář mi to vysvětlil tak, že jsem si připadal,
jako by mi neodpovídal na otázku - asi jsem jediný, kdo tomu nerozumí. U tohoto
obvodu nerozumím ani vstupu, výstupu a podobným pojmům, v knize definovány
nejsou.
3.) Další problém je s představou střídavého proudu. Kudy jdou
elektrony případně díry? U stejnosměrného je jasně dané, kde je + a kde -, ale
střídavý, chvíli jde do obvodu na obě strany + a pak zase -. Byl bych rád, kdyby
jste mi pomohli v tom udělat jasno. (Liam)
Odpověď: K 1. otázce: Co je to napětí?
Než napíši obecnou odpověď, popíši něco obdobného v mechanice.
Kolem Země je gravitační pole. Když umístím 10 m nad podlahu kilovku, bude v
tom místě mít jinou potenciální energii než na podlaze. Rozdíl bude
100 J. Mohli bychom říci, že mezi těmi místy (i když tam žádné
kilovky nebudou) je "mechanické napětí" 100 J/kg. Toto
"mechanické
napětí" charakterizuje ROZDÍL STAVŮ mezi těmito dvěma místy
gravitačního pole. Nic "molekulárního" si představit k tomu
nedovedu, to co jsem popsal, platí i kdyby kolem Země bylo vakuum. Dosaďte místo
Země nabité těleso, místo kilovky nabitou kuličku jednou blíž a
jednou dál a opět můžeme říci, že v těchto dvou bodech bude mít
nabitá kulička rozdílnou potenciální elektrickou energii, rozdíl
těchto energií přepočtený na 1 coulomb, tj. třeba 6 J/C, což je ve
voltech 6V. Je to "elektrické napětí" mezi těmito dvěma místy pole.
I zde charakterizuje elektrické napětí ROZDÍL STAVŮ mezi dvěma místy
elektrického pole. (Svým žákům vždycky říkám, že když ukazují na
nějaké napětí, potřebují k tomu dva prsty, aby ukázali ta dvě místa)
Nic "molekulárního" si tomu představit opět nedovedu, to co jsem
popsal platí i když je to elektrické pole ve vakuu. To napětí mezi
dvěma místy vodiče se dá vytvořit různé, připojením článku, pohybem
magnetu v okolí, atd.
Ke 2. otázce: Co znamená opačná fáze napětí na vstupu a výstupu zesilovače?
Opět to zkusím s mechanickou analogií.
Představte si spojitou nádobu tvaru písmene U s vodou,
kde pravé rameno bude mít velký průřez a levé malý, něco jako
kropicí konev. Když pustím do konve nějaký "vstupní signál" - v
širokém rameni budu například pajtlovat pístem 1 cm dolů a 1 cm
nahoru od rovnovážné polohy, bude "mechanické napětí" mezi
rovnovážnou polohou a okamžitou polohou kmitat od 0 J/kg do -0,1
J/kg (píst dole) k 0 J/kg (píst při návratu uprostřed) až k +0,1
J/kg (píst nahoře). V sousední úzké rouře (tj. "výstup zesilovače"
dejme tomu s plochou průřezu 10krát menší) bude voda kmitat 10 cm
nahoru a 10 cm dolů, tj. s vyšším napětím , které bude kolísat
nejdřív nahoru od 0 J/kg k + 1 J/kg , potom přes nulu dolů k -1
J/kg atd. Tento zesilovač pracuje s desetinásobným zesílením,
vstupní signál má opačnou fázi než výstupní (když jde píst v konvi
dolů, stoupá hladina v úzké rouře nahoru a obráceně). Co je vstup, plyne ze znalosti českého jazyka. Vstupem může např. být napětí z
mikrofonu, které přivádím na vstupní svorky zesilovače, výstup je
napětí, které ze zesilovače přivádím třeba na svorky reproduktorů.
Ke 3. otázce: Jak si představit střídavý proud?
Do třetice s mechanickým modelem.
V hadici, ve které jsou oba konce napojeny na vstup a výstup čerpadla,
proudí voda stejnosměrně kolem dokola.
Teď elektromotorek toho čerpadla budu krmit tak,
aby chvíli čerpalo zleva doprava a potom zprava doleva.
Vodní proud poteče chvilku doleva, chvilku doprava. Proud bude
střídavý, ovšem ne sinusový ale zhruba obdélníkového průběhu.
Sinusový průběh vodního proudu bychom mohli v této trubici docílit
třeba tak, že bychom čerpadlo odstranili, konce propojili a po kusu
hadice jezdili sem tam sinusově (jako při kývání kyvadla) válečkem
na nudle. Z mikrofyzikálního pohledu (opět velmi primitivního) na
elektrický proud doplňuji, co už jednou v Odpovědně zaznělo.
Opakuji: "Nositele nábojů ve vodičích, tj. elektrony v kovech, ionty v
kapalinách a plynech a elektrony a "díry" v polovodičích opravdu
cestují, jak je elektrické pole žene, !!!!kolem dokola!!! v uzavřeném
obvodu (odstartují najednou). Samozřejmě po sepnutí obvodu se
nechovají jako účastníci májového průvodu, kteří udělají vpravo vbok
a jdou ukázněně směrem, kterým je žene pole, ale spíše tak jak
naznačuji svým žákům modelem:
Nositelé nábojů představují hemžící se
mravence v mraveništi, kde vytvořím pachové pole tím, že na jednu
stravu mraveniště dám lákavý med a na druhou něco smradlavého (otevřu
tam třeba lahvičku se čpavkem). Tím mezi těmito dvěma body bude "smradové
napětí".
Díky smradovému poli hemžení neustane, nebude ale zcela
souměrně chaotické (středová rychlost nebude 0), ale bude trošičku převládat
směr rychlosti mravenců k medu. Kam pocestují, tj. jaký je směr proudu, když
smradové pole vyměním, je snad jasné. Samozřejmě mohu to smradové pole střídat
a proud mravenců pak bude střídavý."
Ve vodiči je to chaotické hemžení částic - nosičů náboje velmi velkou
rychlostí, závislou na teplotě, ta usměrněná rychlost (složka rychlosti)
je ve srovnání s tím strašně prťavá, závislá pro daný vodič mj. na napětí
mezi jeho konci.
51) Chaotické řešení diferenciální rovnice popisující volný pád
20. 01. 2004
Dotaz: Dobrý den! Mám tento dotaz: uvažuji těleso padající volným pádem v gravitačním
poli s nějakým "g" a nějakým odporem prostředí "n". Diferenciální rovnice
popisující pohyb tělesa je kvadratická. Nevíte náhodou, jestli lze namixovat "g"
a "n" tak, aby řešení analogické diferenční rovnice vedlo k chaotickému řešení?
Děkuji (Milan)
Odpověď: Je-li urychlující síla (čili g) konstantní a odporová síla (neboli
n) závisí na rychlosti tak, že vždy brzí a to tím silněji, čím je
větší rychlost, pak řešení chaotické být nemůže – pro libovolné
počáteční podmínky se pohyb ustálí na rychlosti, při které je odporová
síla rovna síle urychlující.
Lze ovšem uvažovat jiné předpoklady. Např. pokud úplně vynecháme odpor a
budeme uvažovat g závislé na poloze a na čase, systém se chaoticky
chovat může – známý je třeba případ pulsující potenciálové jámy.
Chaotické chování by patrně systém mohl vykazovat i pro g závislé
pouze na poloze a n pouze na rychlosti, nicméně nepodařilo se mi
zkonstruovat žádný názorný příklad. Pokud upřesníte vlastnosti systému, ve
kterém chcete chaos pozorovat, pokusím se dát konkrétnější odpověď.