FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 23 dotazů obsahujících »polovodič«

6) Vodivost slitin29. 01. 2007

Dotaz: Kovy jsou dobrými vodiči elektřiny, lze opředpokládat, že slitiny kovů jsou dobrými vodiči, v referátu o bronzu, bronz je slitina mědi a cínu je uvedeno ...elektrická vodivost je malá, neboť cín ji značně snižuje, prosím o vysvětlení,děkuji (Schubertova)

Odpověď: Je třeba si uvědomit, co způsobuje vodivost případně odpor kovů. Vedení proudu v kovech (v polovodičích je to jinak) způsobují tzv. téměř volné elektrony, které se oddělily od atomů, jež vytvořily mřížku kovů, např. při ochlazení roztaveného kovu nebo při depozici pár kovů na ochlazenou podložku. Tyto elektrony se pohybují pod silovým vlivem přiloženého elektrického pole, vytvářejí proud a při své cestě potkávají atomy, které mají kladný náboje (neboť je opustil jeden nebo více elektronů). Výsledkem je snadnější nebo obtížnější průchod elektronů atomovou mřížkou a tím i větší nebo menší elektrická vodivost. Atomy kmitají kolem svých rovnovážných poloh, a to tím více, čím vyšší je teplota kovů, a znesnadňují tím průchod elektronů. Proto odpor kovů roste s rostoucí teplotou. Tohle platí beze zbytku pro velmi čistý kov, který tvoří jediný pravidelný krystal (monokrystal). Jakákoli překážka na cestě elektronů: chybějící atom (tzv. vakance), řádka chybějících atomů (tzv. dislokace), celá narušena plocha (tzv. hranice zrn krystalů) a taky cizí příměsové atomy způsobují, že cesta elektronů je obtížnější a elektrická vodivost klesá. Poměr mezi vodivostí velmi čistého měděného monokrystalů dlouhodobě žíhaného k odstranění jakýchkoli poruch a běžnou technickou mědi může činit i několik tisíc. Stačí také malé množství přidaného kovů (slitina), aby vodivost klesla i o několik řádů. Takováto vodivost pak málo závisí na teplotě, protože je závislá především na neuspořádaností mřížky. Takové slitiny jako konstantan, manganin, chromel i mosaz a bronz mají velký měrný odpor, někdy zcela nezávislý na teplotě, což se technický často využívá.

Doufám, že jsem Vám odpověděl na Vaší otázku. Poučení můžete nalézt v učebnicích fyziky pevných látek, např.
  • Ch. Kittel: Úvod do fyziky pevných látek.

(Miloš Rotter)   >>>  

7) Spektrum žárovky a LED28. 11. 2005

Dotaz: Zabývám se vývojem zařízení pro kalibraci digitálních fotoaparátů, jehož ůkolem je vytvořit světlo o určité intenzitě. U již existujícího zařízení je jako světelný zdroj použita klasická 100W žárovka. Já bych ji rád nahradil výkonovou bílou LED-diodou, ale nejsem si jist, zda složení světla z LED neobsahuje o nějakou složku více či méně, především mi jde o poměr infra a ultrafialového záření, které by mohlo ovlivnit CCD snímač. Předem děkuji za jakoukoliv odpověď. S pozdravem Martin Žák (Martin Žák)

Odpověď: Pravděpodobně vás zklamu. Klasická žárovka září díky tomu, že její vlákno je rozžhaveno na velmi vysokou teplotu (až 3000°C) - vyzařuje tedy dle Planckova vyzařovacího zákona spojité spektrum s různou intenzitou jednotlivých vlnových délek. Naproti tomu LED (svítivá dioda) emituje světlo pomocí kvantových jevů na polovodičovém přechodu p-n. Lze tedy očekávat prakticky diskrétní spektrum s výraznou dominancí několika vlnových délek.
(Jakub Jermář)   >>>  

8) Odpor polovodičů22. 11. 2005

Dotaz: Ve škole jsem se nedávno dozvěděl, že když polovodiče zahříváme, tak jejich odpor se snižuje a mě by zajímalo jestli se takto u polovodiče dala vytvořit supravodivost (Pavel Hornak)

Odpověď: Musím vás zklamat, nedala. Když polovodiče zahříváme, dochází ke dvěma jevům. Především díky předávané tepelné energii jsou v látce generovány volné nosiče náboje (můžete si to představit třeba tak, že elektrony jsou odtrhovány od "svých" atomů a mohou se tedy volněji pohybovat - podílet se na vedení proudu). Zároveň však s rostoucí teplotou neuspořádaný tepelný pohyb částic látky čím dál více znesnadňuje vedení proudu. První efekt je u polovodičů při běžné teplotě výraznější a látka tedy se vzrůstající teplotou vede proud lépe a lépe. Kdybychom však teplotu zvyšovali stále, buď polovodič zníčíme (dojde k jeho roztavení, spálení, ...) nebo začne převládat druhý jev (a odpor začne zase vzrůstat).
(Jakub Jermář)   >>>  

9) Vlny nebo částice?08. 04. 2004

Dotaz: Dobrý den, mám dotaz je pravda že podle kvantové teorie může hmota existovat jak v částicích tak ve vlnách? A je pravda, že kdybychom u nějakého objektu na subatomární úrovni posunuli vlny o 180 stupňů, stal by se pro nás neviditelný? (Tomáš Macejka)

Odpověď: Já bych spíše řekl, že v kvantové teorii se stírá rozdíl mezi částicemi a vlnami, což jsou pojmy, které do mikrosvěta plného zajímavých a neobyčejných jevů přinášíme z našeho makrosvěta. Například na rentgenové záření se někdy hodí dívat jako na vlny (když studujeme jeho difrakci na krystalech) a někdy jako na proud částic - fotonů (když nás bude zajímat, co třeba způsobí v polovodičovém detektoru). Cesta k poznání není v meditacích, jak je to možné, ale v seznámení se s ději mikrosvěta a jejich popisem. Když k vlnění přidáte další posunuté ve fázi o 180° a se stejnou amplitudou a když zařídíte interferenci obou těchto vlnění, tak se obě vlnění navzájem vyruší. Ale strefit se do fáze i amplitudy není vůbec snadné, prakticky se takový efekt využívá při aktivní protihlukové ochraně.
(Jiří Dolejší)   >>>  

10) Mechanický model napětí, zesilovače a střídavého proudu23. 01. 2004

Dotaz: Prolétl jsem články o elektřině a magnetismu, ale to co jsem hledal, jsem nenašel. Vždy se dovídám dogmata.
1.) Tak např. vždy používáte el. napětí. Do obvodu musíme zavést el. napětí, aby mohl téct proud. Ten ale téct vůbec nemusí.. tomu nerozumím, co je tedy el. napětí, resp. jak si ho představit (a to na molekulární úrovni - pokud tak lze).
2.) V učebnici Elektřina a magnetismus pro střední školy je zakreslen obvod s tranzistorem - obr. "Tranzistorový zesilovač"- podobný lze nalézt i jinde (i ve skriptech elektroniky). Vždy tam je řečeno, že na výstupu je obrácená fáze napětí, ale proč to tak je? Fyzikář mi to vysvětlil tak, že jsem si připadal, jako by mi neodpovídal na otázku - asi jsem jediný, kdo tomu nerozumí. U tohoto obvodu nerozumím ani vstupu, výstupu a podobným pojmům, v knize definovány nejsou.
3.) Další problém je s představou střídavého proudu. Kudy jdou elektrony případně díry? U stejnosměrného je jasně dané, kde je + a kde -, ale střídavý, chvíli jde do obvodu na obě strany + a pak zase -. Byl bych rád, kdyby jste mi pomohli v tom udělat jasno. (Liam)

Odpověď: K 1. otázce: Co je to napětí?
Než napíši obecnou odpověď, popíši něco obdobného v mechanice. Kolem Země je gravitační pole. Když umístím 10 m nad podlahu kilovku, bude v tom místě mít jinou potenciální energii než na podlaze. Rozdíl bude 100 J. Mohli bychom říci, že mezi těmi místy (i když tam žádné kilovky nebudou) je "mechanické napětí" 100 J/kg. Toto "mechanické napětí" charakterizuje ROZDÍL STAVŮ mezi těmito dvěma místy gravitačního pole. Nic "molekulárního" si představit k tomu nedovedu, to co jsem popsal, platí i kdyby kolem Země bylo vakuum. Dosaďte místo Země nabité těleso, místo kilovky nabitou kuličku jednou blíž a jednou dál a opět můžeme říci, že v těchto dvou bodech bude mít nabitá kulička rozdílnou potenciální elektrickou energii, rozdíl těchto energií přepočtený na 1 coulomb, tj. třeba 6 J/C, což je ve voltech 6V. Je to "elektrické napětí" mezi těmito dvěma místy pole. I zde charakterizuje elektrické napětí ROZDÍL STAVŮ mezi dvěma místy elektrického pole. (Svým žákům vždycky říkám, že když ukazují na nějaké napětí, potřebují k tomu dva prsty, aby ukázali ta dvě místa) Nic "molekulárního" si tomu představit opět nedovedu, to co jsem popsal platí i když je to elektrické pole ve vakuu. To napětí mezi dvěma místy vodiče se dá vytvořit různé, připojením článku, pohybem magnetu v okolí, atd.

Ke 2. otázce: Co znamená opačná fáze napětí na vstupu a výstupu zesilovače?
Opět to zkusím s mechanickou analogií. Představte si spojitou nádobu tvaru písmene U s vodou, kde pravé rameno bude mít velký průřez a levé malý, něco jako kropicí konev. Když pustím do konve nějaký "vstupní signál" - v širokém rameni budu například pajtlovat pístem 1 cm dolů a 1 cm nahoru od rovnovážné polohy, bude "mechanické napětí" mezi rovnovážnou polohou a okamžitou polohou kmitat od 0 J/kg do -0,1 J/kg (píst dole) k 0 J/kg (píst při návratu uprostřed) až k +0,1 J/kg (píst nahoře). V sousední úzké rouře (tj. "výstup zesilovače" dejme tomu s plochou průřezu 10krát menší) bude voda kmitat 10 cm nahoru a 10 cm dolů, tj. s vyšším napětím , které bude kolísat nejdřív nahoru od 0 J/kg k + 1 J/kg , potom přes nulu dolů k -1 J/kg atd. Tento zesilovač pracuje s desetinásobným zesílením, vstupní signál má opačnou fázi než výstupní (když jde píst v konvi dolů, stoupá hladina v úzké rouře nahoru a obráceně). Co je vstup, plyne ze znalosti českého jazyka. Vstupem může např. být napětí z mikrofonu, které přivádím na vstupní svorky zesilovače, výstup je napětí, které ze zesilovače přivádím třeba na svorky reproduktorů.

Ke 3. otázce: Jak si představit střídavý proud?
Do třetice s mechanickým modelem. V hadici, ve které jsou oba konce napojeny na vstup a výstup čerpadla, proudí voda stejnosměrně kolem dokola. Teď elektromotorek toho čerpadla budu krmit tak, aby chvíli čerpalo zleva doprava a potom zprava doleva. Vodní proud poteče chvilku doleva, chvilku doprava. Proud bude střídavý, ovšem ne sinusový ale zhruba obdélníkového průběhu. Sinusový průběh vodního proudu bychom mohli v této trubici docílit třeba tak, že bychom čerpadlo odstranili, konce propojili a po kusu hadice jezdili sem tam sinusově (jako při kývání kyvadla) válečkem na nudle. Z mikrofyzikálního pohledu (opět velmi primitivního) na elektrický proud doplňuji, co už jednou v Odpovědně zaznělo.
Opakuji: "Nositele nábojů ve vodičích, tj. elektrony v kovech, ionty v kapalinách a plynech a elektrony a "díry" v polovodičích opravdu cestují, jak je elektrické pole žene, !!!!kolem dokola!!! v uzavřeném obvodu (odstartují najednou). Samozřejmě po sepnutí obvodu se nechovají jako účastníci májového průvodu, kteří udělají vpravo vbok a jdou ukázněně směrem, kterým je žene pole, ale spíše tak jak naznačuji svým žákům modelem: Nositelé nábojů představují hemžící se mravence v mraveništi, kde vytvořím pachové pole tím, že na jednu stravu mraveniště dám lákavý med a na druhou něco smradlavého (otevřu tam třeba lahvičku se čpavkem). Tím mezi těmito dvěma body bude "smradové napětí". Díky smradovému poli hemžení neustane, nebude ale zcela souměrně chaotické (středová rychlost nebude 0), ale bude trošičku převládat směr rychlosti mravenců k medu. Kam pocestují, tj. jaký je směr proudu, když smradové pole vyměním, je snad jasné. Samozřejmě mohu to smradové pole střídat a proud mravenců pak bude střídavý."
Ve vodiči je to chaotické hemžení částic - nosičů náboje velmi velkou rychlostí, závislou na teplotě, ta usměrněná rychlost (složka rychlosti) je ve srovnání s tím strašně prťavá, závislá pro daný vodič mj. na napětí mezi jeho konci.

(M.Rojko)   >>>