|
|
Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 18 dotazů obsahujících »rovnovážné«
10) Měření periodických kmitů | 27. 02. 2006 | Dotaz: Dobry den! Byla bych moc rada,kdybyste mi zodpovedel menci otazku:Proc,kdyz
merime periodu kmitani,zmackneme stopky,kdyz teleso prochazi rovnovaznou polohou
a ne,kdyz je v krajnich mistech. Dekuji mnohokrat (Anna) | Odpověď: V místě okolo největší výchylky se těleso nachází poměrně dlouhou dobu a relativně málo se mění jeho poloha (těleso se zde přece při otočce musí nejdříve zastavit) - je tedy těžké přesně odhadnout, zda už těleso úplně zastavilo nebo se ještě maličko pohybuje. V rovnovážné poloze se těleso naopak pohybuje nejrychleji, nejméně se poblíž této polohy zdrží a tudíž bývají nepřesnosti při měření nejmenší. Navíc reálné kmity se budou utlumovat, takže místo největší výchylky se bude trochu měnit, zatímco rovnovážná poloha zůstává stále stejná a snadněji se tedy měří (můžeme si tam snáze umístit nějakou risku).
| (Jakub Jermář) | >>> |
11) Mechanický model napětí, zesilovače a střídavého proudu | 23. 01. 2004 | Dotaz: Prolétl jsem články o elektřině a magnetismu, ale to co jsem hledal, jsem nenašel. Vždy se dovídám dogmata.
1.) Tak např. vždy používáte el. napětí. Do obvodu musíme zavést el. napětí, aby mohl téct proud. Ten ale téct vůbec nemusí.. tomu nerozumím, co je tedy el. napětí, resp. jak si ho představit (a to na molekulární úrovni -
pokud tak lze).
2.) V učebnici Elektřina a magnetismus pro střední školy je zakreslen obvod s
tranzistorem - obr. "Tranzistorový zesilovač"- podobný lze nalézt i jinde (i ve
skriptech elektroniky). Vždy tam je řečeno, že na výstupu je obrácená fáze
napětí, ale proč to tak je? Fyzikář mi to vysvětlil tak, že jsem si připadal,
jako by mi neodpovídal na otázku - asi jsem jediný, kdo tomu nerozumí. U tohoto
obvodu nerozumím ani vstupu, výstupu a podobným pojmům, v knize definovány
nejsou.
3.) Další problém je s představou střídavého proudu. Kudy jdou
elektrony případně díry? U stejnosměrného je jasně dané, kde je + a kde -, ale
střídavý, chvíli jde do obvodu na obě strany + a pak zase -. Byl bych rád, kdyby
jste mi pomohli v tom udělat jasno. (Liam) | Odpověď: K 1. otázce: Co je to napětí?
Než napíši obecnou odpověď, popíši něco obdobného v mechanice.
Kolem Země je gravitační pole. Když umístím 10 m nad podlahu kilovku, bude v
tom místě mít jinou potenciální energii než na podlaze. Rozdíl bude
100 J. Mohli bychom říci, že mezi těmi místy (i když tam žádné
kilovky nebudou) je "mechanické napětí" 100 J/kg. Toto
"mechanické
napětí" charakterizuje ROZDÍL STAVŮ mezi těmito dvěma místy
gravitačního pole. Nic "molekulárního" si představit k tomu
nedovedu, to co jsem popsal, platí i kdyby kolem Země bylo vakuum. Dosaďte místo
Země nabité těleso, místo kilovky nabitou kuličku jednou blíž a
jednou dál a opět můžeme říci, že v těchto dvou bodech bude mít
nabitá kulička rozdílnou potenciální elektrickou energii, rozdíl
těchto energií přepočtený na 1 coulomb, tj. třeba 6 J/C, což je ve
voltech 6V. Je to "elektrické napětí" mezi těmito dvěma místy pole.
I zde charakterizuje elektrické napětí ROZDÍL STAVŮ mezi dvěma místy
elektrického pole. (Svým žákům vždycky říkám, že když ukazují na
nějaké napětí, potřebují k tomu dva prsty, aby ukázali ta dvě místa)
Nic "molekulárního" si tomu představit opět nedovedu, to co jsem
popsal platí i když je to elektrické pole ve vakuu. To napětí mezi
dvěma místy vodiče se dá vytvořit různé, připojením článku, pohybem
magnetu v okolí, atd.
Ke 2. otázce: Co znamená opačná fáze napětí na vstupu a výstupu zesilovače?
Opět to zkusím s mechanickou analogií.
Představte si spojitou nádobu tvaru písmene U s vodou,
kde pravé rameno bude mít velký průřez a levé malý, něco jako
kropicí konev. Když pustím do konve nějaký "vstupní signál" - v
širokém rameni budu například pajtlovat pístem 1 cm dolů a 1 cm
nahoru od rovnovážné polohy, bude "mechanické napětí" mezi
rovnovážnou polohou a okamžitou polohou kmitat od 0 J/kg do -0,1
J/kg (píst dole) k 0 J/kg (píst při návratu uprostřed) až k +0,1
J/kg (píst nahoře). V sousední úzké rouře (tj. "výstup zesilovače"
dejme tomu s plochou průřezu 10krát menší) bude voda kmitat 10 cm
nahoru a 10 cm dolů, tj. s vyšším napětím , které bude kolísat
nejdřív nahoru od 0 J/kg k + 1 J/kg , potom přes nulu dolů k -1
J/kg atd. Tento zesilovač pracuje s desetinásobným zesílením,
vstupní signál má opačnou fázi než výstupní (když jde píst v konvi
dolů, stoupá hladina v úzké rouře nahoru a obráceně). Co je vstup, plyne ze znalosti českého jazyka. Vstupem může např. být napětí z
mikrofonu, které přivádím na vstupní svorky zesilovače, výstup je
napětí, které ze zesilovače přivádím třeba na svorky reproduktorů.
Ke 3. otázce: Jak si představit střídavý proud?
Do třetice s mechanickým modelem.
V hadici, ve které jsou oba konce napojeny na vstup a výstup čerpadla,
proudí voda stejnosměrně kolem dokola.
Teď elektromotorek toho čerpadla budu krmit tak,
aby chvíli čerpalo zleva doprava a potom zprava doleva.
Vodní proud poteče chvilku doleva, chvilku doprava. Proud bude
střídavý, ovšem ne sinusový ale zhruba obdélníkového průběhu.
Sinusový průběh vodního proudu bychom mohli v této trubici docílit
třeba tak, že bychom čerpadlo odstranili, konce propojili a po kusu
hadice jezdili sem tam sinusově (jako při kývání kyvadla) válečkem
na nudle. Z mikrofyzikálního pohledu (opět velmi primitivního) na
elektrický proud doplňuji, co už jednou v Odpovědně zaznělo.
Opakuji: "Nositele nábojů ve vodičích, tj. elektrony v kovech, ionty v
kapalinách a plynech a elektrony a "díry" v polovodičích opravdu
cestují, jak je elektrické pole žene, !!!!kolem dokola!!! v uzavřeném
obvodu (odstartují najednou). Samozřejmě po sepnutí obvodu se
nechovají jako účastníci májového průvodu, kteří udělají vpravo vbok
a jdou ukázněně směrem, kterým je žene pole, ale spíše tak jak
naznačuji svým žákům modelem:
Nositelé nábojů představují hemžící se
mravence v mraveništi, kde vytvořím pachové pole tím, že na jednu
stravu mraveniště dám lákavý med a na druhou něco smradlavého (otevřu
tam třeba lahvičku se čpavkem). Tím mezi těmito dvěma body bude "smradové
napětí".
Díky smradovému poli hemžení neustane, nebude ale zcela
souměrně chaotické (středová rychlost nebude 0), ale bude trošičku převládat
směr rychlosti mravenců k medu. Kam pocestují, tj. jaký je směr proudu, když
smradové pole vyměním, je snad jasné. Samozřejmě mohu to smradové pole střídat
a proud mravenců pak bude střídavý."
Ve vodiči je to chaotické hemžení částic - nosičů náboje velmi velkou
rychlostí, závislou na teplotě, ta usměrněná rychlost (složka rychlosti)
je ve srovnání s tím strašně prťavá, závislá pro daný vodič mj. na napětí
mezi jeho konci.
| (M.Rojko) | >>> |
12) Barva topení a chladiče ledničky | 03. 12. 2003 | Dotaz: Proč je topení bílé a chladič ledničky černý? (Anežka Horáková) | Odpověď: Černá barva způsobuje, že těleso lépe absorbuje dopadající záření
(světelné i tepelné), a což je pro leckoho překvapivé, že také lépe teplo
vyzařuje. Proto se chladiče dělají černé. Radiátor topení také potřebuje
předávat teplo do okolí, ale asi (nejsem expert na topení) se počítá s
tím, že podstatnou roli bude hrát ohřívání vzduchu v kontaktu se žebry
radiátoru (zde barva nerozhoduje) a pak přenos tepla prouděním tohoto
vzduchu. Estetická stránka patrně převažuje nad přínosem zvýšeného přenosu
tepla v případě tmavého radiátoru.
(J.Dolejší)
Reakce na odpověď:
V odpovědi uvádíte, ze barva je důležitá pro efektivitu chladiče. Odkazujete se
na Planckův zákon. Pořád ale nerozumím, proč tomu tak je. Můžete to rozvést? Bílý chladič vydává záření o vyšší vlnové délce, a proto je hustota zářivého toku menší? Nevydává se většina tepla v infračerveném spektru?
Odpověď:
Má-li chladič nějakou barvu, znamená to, že tuto barvu odráží více než ostatní
(proto ho v této barvě taky vidíme). Uvážíme-li situaci v rovnovážném stavu, pak
zvýšená emise na jisté vlnové délce musí být spjata i se zvýšenou absorbcí této
vlnové délky, aby totiž předměty téže teploty, ale různých barev mohly být spolu
v rovnováze. Obvyklá situace chladiče však není rovnovážný stav: chladič je
spojen s něčím o teplotě výrazně vyšší než okolí a disipuje do okolí teplo. Pak
je ovšem nejvýhodnější chladič "všech barev", černý, který bude co nejvíc
vyzařovat světlo všech vlnových délek. (Samozřejmě, že by v případě teplejšího
okolí naopak pohlcoval světlo i teplo nejrychleji - ale chladič je zpravidla v
okolí chladnějším, než je sám.)
| (J.Obdržálek) | >>> |
13) Kavitace | 19. 06. 2003 | Dotaz: Existují reálné kapaliny, které mají tlak par roven tlaku vakua? Tedy, že
škrcením jejich průtoku za žádných podmínek nedojde ke kavitaci. Pokud ano,
patří k nim např. VGO (Vacuum Gas Oil)? (Jaroslav Habán) | Odpověď: Myslím, žejde o neporozumění. "Tlak vakua" je samozřejmě 0, podle definice
vakua; to by asi doslovně možné nebylo. Prakticky by tedy šlo o kapalinu,
jejíž tlak par je za zamýšlené teploty zanedbatelný. Tomu by asi nejlépe
vyhovovaly oleje užívané ve vakuové teplotě.
Ovšem kavitace je způsobena tím, že pod vlivem velkého a náhlého
gradientu sil a tím i rychlostí se kapalina "roztrhne", tj. vzniknou v ní
dutiny. Jejich vznik nesouvisí s tím, že vzápětí poté se do tohoto
"bublinového vakua" vypařuje okolní kapalina. Myslím, že (rovnovážné)
napětí par nad kapalinou mnoho neřekne o jejím chování při prudkých
změnách, které jsou příčinou kavitace.
| (J.Obdržálek) | >>> |
14) Ochlazování těles | 03. 10. 2002 | Dotaz: Zajímalo by mne, zda lze ochlazovat tělesa jinka než pomocí Joule-Thompsonova efektu. Samozřejmě lze použít například skupenské teplo fázové přeměny, ale to je jen krátkodobá záležitost a nelze takto trvaleji udržet sníženou teplotu. Jak například fungují malé chladničky určené pro osobní automobily napájené z autobaterie. (Rostislav Dudek) | Odpověď: Tyto
lednicky pracují na principu Peltierova jevu. Pri pruchodu
elektrického proudu rozhraním dvou vodicu proudu nejsou
obecne rovnovážné teploty vodicu stejné: jeden se
ochlazuje a druhý se zahrívá (NENÍ to Joulovo teplo). Jiný
zpusob chlazení užívá expanze plynu, který je pritom nucen
konat práci; pritom se ochlazuje KAŽDÝ plyn, nejen
neideální, jako pri Joulove-Thomsonove jevu.
Mužete se podívat i na stránku: http://www.ereferaty.cz/index.asp?c=view&ID=1018, kde se dozvíte další zajímavosti o
chlazení. (JO - 3.10.2002)
Bežne se používá v
chladnickách a mraznickách adiabatická expanze, plyn se
stlací a pri rychlé expanzi dojde k ochlazení, pak se plyn
znova stlací, v chladici se opet teplota sníží a další
expanzí se to zase chladí a tak to jde dokola. Proto každá
chladnicka víc tepla do kuchyne dodává, než ubírá
zevnitr.
Jeden z dalších zpusobu je využití Peltierova efektu: pri
pruchodu proudu obvodem spájeným ze dvou ruzných kovu
(príp. polovodicu) vzniká mezi obema spájenými místy
teplotní rozdíl. Jde o brácený jev k termoelektrickému. To
se dnes prakticky využívá k chlazení menších objemu.
(MR - 7.10.2002) | (J.Obdržálek, M.Rojko) | >>> |
|